T

*

e
-
®
®
@
g
.
®
»
"
>
e
K
.
.

MERLIN"

The Macro Assembler
For The Apple Il Family

- By Glen Bredon

"MERLIN

The Macro Assembler For The Apple
By Glen Bredon

What kind of assembler would you expect
from a company that established itself with
programming utilties? Simply the best, of
course. MERLIN is more than just an
assembler. It is an extremely powerful
macro assembler, with a sophisticated
editor, combined with numerous other files
and programming utilities into a truly
remarkable package.

The MERLIN assembler, besides having the
common features you would expect, allows
such enhancements as the optional writing
of object files directly to disk, and linking
files to assemble source listings otherwise
too large to fit in memory at once. The
source listing can also use macro routines,
thus saving time and space. The macro
feature of MERLIN allows you to give a
simple name to often used routines in a
listing, and then enter only the name of the
macro when entering text.

MERLIN will read and write text files as well
as binary source files, and is often capable of
using files generated on other assemblers
with little or no adjustments. The global
search/replace function of the editor also
makes it easy to change pseudo-ops that
may have been pecullar to the other
assembler.

MERLIN supports BOTH 6502 and 65C02
opcodes. Additionally, MERLIN supports
SWEET 16 opcodes as well, and the manual
includes a short tutorial on this subject by
Steve Wozniak, co-founder of Apple
Computer, Inc.

In addition to the MERLIN assembler, the
package also includes:

SOURCEROR:

This generates pseudo source code from
raw binary data. Uses a pre-defined
Applesoft Source label file to give the most
detalled listings possible. The label file can
also be edited to include your ownlabels as
you desire.

MACRO LIBRARY:

A library of commonly used macro
definitions and fundamental operations
such as multiplication and divide routines is
included on the diskette.

SWEET 16 SOURCE:

A source code for a transportable SWEET 16
Interpreter, usable even withoutthe Integer
non-Auto Boot ROM.

APPLESOFT SOURCE:

If you have Applesoft in ROM or
LANGUAGE CARD, you can use utilities
included in the MERLIN package to createa
fully labeled and commented listing of
Applesoft BASIC. This Is an invaluable aid to
anyone attempting to gain a deeper
understanding of the Intemal workings of
Applesoft.

MERLIN is compatible with most 80 column
cards and supports upper/iower case entry,
including the one-wire shift key mod and
commercial lower case devices.

MERLIN is shipped on a double-sided DOS
3.3 diskette and is hard disk compatible.

SYSTEM REQUIREMENTS:
Apple II/1l+ with language/RAM card or Apple lle or Apple lic

Roger
PUBLISHI

NG 5 INC.

£

ISBN 0-927796-03-1

MERLIN"

The Macro Assembler
For The Apple

By Glen Bredon

INSTRUCTION
MANUAL

Copyright © 1984 by Roger Wagner
Publishing, Inc. All rights reserved.
This document, or the software
supplied with it, may not be
reproduced in any form or by any
means in whole or in part without
prior written consent of the copy-
right owner.

ISBN 0-927796-03-1

PRODUCED BY:

5 PUBLISHING,? INC.

10761 Woodside Avenue e Suite E e Santee, California 92071
Customer Service & Technical Support: 619/562-3670

OUR GUARANTEE

This product carries the unconditional
guarantee of satisfaction or your
money back. Any product may be
returned to place of purchase for
complete refund or replacement
within thirty (30) days of purchase if
accompanied by the sales receipt or
other proof of purchase.

First, our legal stuff...

ROGER WAGNER PUBLISHING, INC.
CUSTOMER LICENSE AGREEMENT

IMPORTANT: The Roger Wagner Publishing, Inc. software
product that you have just received from Roger Wagner
Publishing, Inc., or one of its authorized dealers, is
provided to you subject to the Terms and Conditions of
this Software Customer License Agreement. Should you
decide that you cannot accept these Terms and Condi~-
tions, then you must return your product with all docu~-
mentation and this License marked "REFUSED"” within the
30 day examination period following the receipt of the
product.

1. License. Roger Wagner Publishing, Inc. hereby
grants you wupon your receipt of this product, a
nonexclusive 1license to wuse the enclosed Roger Wagner
Publishing, 1Inc. product subject to the terms and
restrictions set forth in this License Agreement.

20e Copyright. This software product, and its
documentation, is copyrighted by Roger Wagner Publish-~
ing, Inc. You may not copy or otherwise reproduce the

product or any part of it except as expressly permitted
in this License.

3. Restrictions on Use and Transfer. The original and
any backup copies of this product are intended for your

personal use in connection with a single computer. You
may not distribute copies of, or any part of, this
product without the express written permission of

Roger Wagner Publishing, Inc.

LIMITATION ON WARRANTIES AND LIABILITY

ROGER WAGNER PUBLISHING, INC. AND THE PROGRAM AUTHOR
SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO PURCHASER
OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY
LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED
DIRECTLY OR INDIRECTLY BY THIS SOFTWARE, INCLUDING, BUT
NOT LIMITED TO ANY INTERRUPTION OF SERVICE, LOSS OF
BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL
DAMAGES RESULTING FROM THE USE OR OPERATION OF THIS
SOFTWARE. SOME STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

Then Apple”s...

DOS 3.3 Standard is a copyrighted program of Apple
Computer, Inc. licensed to Roger Wagner Publishing, Inc.

to distribute for use only in combination with
Merlin.
APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER

EXPRESS OR IMPLIED, REGARDING THE ENCLOSED SOFTWARE
PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES
IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH
SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT
YOU MAY HAVE WHICH VARY FROM STATE TO STATE.

And now on with our program!

ABOUT THE AUTHOR

Glen Bredon is a professor at Rutgers University in New
Jersey where he has taught mathematics for over fifteen
years. He purchased his first computer in 1979 and began
exploring its internal operations because "I wanted to know
more than my students.” The result of this study was the
best selling Merlin Macro Assembler and other programming
aids. A native Californian and concerned environmentalist,
Glen spends his summers away from mathematics and computing,
prefering the solitude of the Sierra Nevada mountains where

he has helped establish wilderness reserves.

PRODUCT REFERENCE MERLIN 2M1084LC

MERLIN Users Manual TABLE OF CONTENTS

TABLE OF CONTENTS

I. INTRODUCTION cccccccccccccssccsoccsscsscssssnsansscs
Assembly Language Whys and Whereforescce..
Backgrounds and Features c.ccceeescccsccscssccs
Suggested Reading ceceocccccccscccasccsessonnnee

PWHE

II. SYSTEM REQUIREMENTS cccccccccccccccscccoccsssccscsas
Hardware Compatability LiSt ecccceccecososcccscs

N~

III. BEGINNERS GUIDE TO USING MERLIN ccccccccccccccccsss 9
Introduction «ececesscceccsssesossonssesssonscss 9
INput cececccscsccsccscossossscssosscsossssasssess 10
Steps from the Very Beginning .ccceeveesececsss 10
System and Entry CommandS eccceeecocococcscsess 13
A s sem by R Rk ot ese oie e telokaienokatone tata toRstotsistols s stoharaisol ol L5
Saving and Running Programsceceeeeesesess 18
Making Back-up Copies of MERLIN ..eseveccccsees 19

Vs EXECUTLVE: MODE! \c ik oteietsiatosare e feletorole s alslelo s clols s siorsis sis siomr 21
Gz CATATOG) soxstekois toiatorsneis e tototebers ol ttoth o Bl el e ate: wisro wsios 211
Lt LOADMS OUR CEN e oo keriobe s oot Lot o S T B LW 0 o aratelesl 2],
S:SAVE SOURCE «ceceeecccococccacavacaasnannoeee 22
A APPENDNETLE beteistos oo torenst shspelslebalstoretatarate bilshita s o ite 22
D:DREVE S CHANGE L« cteieteliommile s isistaisksiogoistototslafors s shotemiaeis. (23
E:ENTERIED/ASML 4 ieseisres oieusterskoioiske slstoiohetslsiotsisiaioie atasts 23
02 SAVE| OBIEGT CODE, icicheisieisioseiorsiotsistototeirolstetats siatsiststs. 123
QEQUIET) s ers ek ioroe s o s oneso el stateteoatora s alsiatalslole bl tareisais wis 24
R e READ LR E LR eh atatere afele s Tofelelehe orsiatere isroreioneisiste. = 24
WeWRILTE N TEXTNE LR B et fots lo e oo keteistslatoiatate s ole aiv slaiais. 125

Vies THE EDITOR (cicia ole/eleletelatars o alolalote o o) olotatalalalaisiols a)s siie a i aiaieiel 27
Command: MOde: isisis sisie siolots cleia s e sreleislalarsiols ois o siain siame 2
Hex—Dec Conversion .ccscsessossscsssssonsns 28

HImem i orsle otelele clotaisleie e alv/oheia tejslstoiare)s a aluin mistore 28

NEM ain oleisis oisleshe oiste vain sialsis sisloisiolo ns s siasisonss 28

PRIFA EerarererelTotatofe) et eRatatats o o e Wl Ee o fope oL attatat o laraforale ® W28

USER o ihennlassanslasiassenssnsssssssssssmas 29

ITABS: toiicieinreiciere slsielsta oisheielsiclsle) sisisie tatols vie ainrsisiaierve 29

TN Gl i 015 6 B0 G0 G0 D0 50 010 000 SB OB Ds Bt o)

WHEXe . siceecieiciniosiesiaisiosiosiosinia sioinialere sisiois vio sie 29

MERLIN Users Manual TABLE OF CONTENTS

MONT:OE W0 e o% e ale alt ate e lelato ata ats) fh 5L IO 0 D0 0 Ol | S8)
TRUNCON R e et oo e OO0 IO G0 O i iy D)
TRUncOFf ..ccceeee 0D TD D0 DI O 6 DG O O O oluivioie 30
Quit ceeeccns 5010 0T GO 00 010 THD Ty D O3 D10 40 O D5 £ 30
ASM ceosvsonsssnnmnnons Sheloksistsietohalato Toratateleto nle s slalll 3L
Deloteliitl Jeath cheteiate shsistolstaiole s oislotstols Sisielsisteis s 31
Replace cseececccscecescosanas sessssssssses 31
LIBE wwsioswsanneine senecsasish o siskefelelistoie ois sisinie 32

VIDEO «iseis sisisisei SR G 00 00 GO0 sissw e e s ae e 37
EWS (Einds Word) iiicioiis oot cks slelstate s staleictaiotars SO eV
CW (Change Word) cceceeccencsse Felstes sl e sinsl 38
EW (EQLt WOLA) oo eenncenennensonsonennonnns 38
WATLR wojsvs tonsishuiis otons e toraneraronorn oiatblotste Ll e srew eesl 138
Add/Insert Modes «.eooocoes SoasG ST o e e T 39
Add S0 0400 B0 GO Dt D90 D B G 0440 S o R R 39

TS ETER Fehels Foleto oo ol Felateare ebetots 5010 63 040 GG 10 130 A I 40
EditfModes oLt i ok o G 0 G GO 0 ok 0) e e e 40
Edit Mode CommandS esecevesoccoscnss I e la e 4 O

Control-I (insert) coceecesccccoses S0 acona i)

Control-D (delete) ceo.cs. cesesesecsssseness 40
Control-F (find) .cceovesss GOBOTE 0660 08 Ba soe 41
Control-0 (insert special) .cesvese b it e 41
Control=P (doi 2**T)i .ic e etslelelc slolstoistainsie ¢ coes 42
Control-C or Control-X (cancel) .ccceceeeee 42
Control-B (go to line begin) B S0 ooe 42
Control-N (go to line end) ceceeeeccccens oo 42
Control-R (restore line) .ecoec.. 5 0 Do O Soo)
Control-Q (delete line right) ..ccecceesces 42
Return (RETURN Key) cecececcesccss ceesessss 42

MERLIN Users Manual TABLE OF CONTENTS

VI. THE ASSEMBLER ccccccccccccccccccccccccncncccssccccs 45
Number FOXrmat «ccecececececcccecccccaccsccsccsscssses 45

Source Code FOrmat cceeececccccccccscoccccccass 46
EXPLESSLONG ieleioioteletoteioreintotolotoiolototololts aloie s oie sio sis ol o (&1
Immediate DAta eeeceececceccsscssssssceccssscssscs 48
Addressing Modes (6502) ccocecececceeccsansnsss 49

Sweet 16 Opcodes eccecececccceccossocsctscccscssses 50

Pseudo Opcodes — Directives cceceececocscccscoss 50

EQUN(E) tofeiarstateietatetslctoicisie sints wisheiate o vis ata sisis/msisiel D0

ORG cscssocccosssoscsscsscscscssssassssssscsas Ol
OBJ cocceoconcccssoscossscsessascncnssassans Dl
PUT 'e% ofe'a’sietuis o slalialslatete stelelofs sletels telalale vie sisrale srelat « DI
VAR cecescsecocencascsoscsccsccassscssanasaces D2
SAV' Yelelelelsils siataratets sls sisielaielors o /slsls ‘o/alata s e aie s v aime D3
DY S 505000 GO G000 08 08 GE e A G0 A0S G OGO0 O S15)
JENID) . 550 00 0o B0 00 O O U O G 0 0 I 8 DS i G I i ki
DUM ccccocoocosonsoceossacscsosssscscsnsenns OSh

DENDES e e e tele oo Toke ts latal ofs stetetaleball= sl kate ok tat T IS 1
FOrmatting o . eisteisisishsin oo olohoiaioie sioia slsisioisiorsiel sie alaleaisl + 55
LS ON/QFEN taistsctore sishainlatefalolstetstsistels s silots o oisletalal D5
EXP ON/OFF cecceceecsccsccescsccsssessssnos 56

PAU cccecocsscnacssscscsosccscsssssssassnses Db
PAGH JFoitie’s ol ale oo sielsie olal slalaiielsterelolslsiatolsieie sie slo sis's DO
AST R e ol etrutis o els alsisiers o e 'ois sintaialelatere e v/s sisia D7
15 A O o0 I O/ R O RO e D 0T Sl

T OIABINT oo s O O 06 O OO OIS B 000 S
SErings oh il e e e e ale oie ot e eieie O

S G 0000000000000 00 OO HOO0 GONG SEB60G 0G0 el
IDIEIE o0 0 D OB oG O 0 OGS OGN0 G OSa00 000G GO0 el
INV oo cieieniosio oo sjaaiasisioinsoesesiosssisiosissosss I8
BLS? o lelctefeloia eioialoit/stoiols elalaiaielelotatolls 'sia'sio sie sioisje aiste. D
SR O OO O DO O D GO0 IO GO 0 S0 B EDa 000 BiE)

Data and Allocatlion s eesiessesesesocnsssnssnsssss DI

DAY Volele olelaia elsleis ols slsiale ols sisistersts s s sin sis uis sje sisie DI
DDB? '<ic e lelaio slatalolals'sls sin alais’s s's olsis nle sis je sie sie eia s 00
DFB' siccccoiosssissiossnsssscsnassassssosssesss 60
HEX cceccecoccosscccsoscsscscsscscsssnncasces 0Ol
DS cescsvosnsessosossesensssnsssnssssioseses 61
KBD ccsssecacscccscssasscscsssssscssnsccasas 0Ol
LUPR Vola e aiatolelelofe olaioinlietols stet skeletoi sluiatelelnie sialvi viniaioie (D2
CHK cccccecccaccsosssaccncsesanconsnsssnsees 63
ERR cccceccccccccsccescsccsccssacssssssnssas 63

BERL 6000000 0000 50 06000 0 o0 0G50 a0 on oo Saaon o

MERLIN Users Manual TABLE OF CONTENTS

Condd tlionalis, Sssicicie clsisteosaks sreiorsis siatelotetoisialols el oned ¥ 67

DO cccscessccoccocscsscsocoscsosonccsscscnocssnes OF
ELSE cccceccscscccssscssccccscocscaccsssnsses 08
IF ccocccosccscscscssssasoscssscsasscccsssncss 08
FIN ccccoocccccccccacocncccscssossasossacncss 08

MaCT OS] Veieoinhsioreioxoinistolskelorols o oraliets!elatate iatsjotvicialolnleie »ies o o/ /0
AT 0.0 9000000000000 GO o7 B0 O G B 03 0 00 SO onme o TG
13016 (EEED) 5500000 00m0C 08 00 D000 000 46 56 GO s on e A
S (D20 006 680 6060000600 50000 3608 GG e s A

NVariables sieteesie csiseissis ool s e selsisssivonssass 11

VAGLo I 58665060005 000 5056 D050 0a06G 0080 90 S00INE B0 00 k)
Defining¥al MAGTEO, J<isisisielais,ohrkerobsrntoioseraRatoltio ole ate slaialetel 13
Nested MaCros) . eisisisisis sisisisissieoia sis s daislsio niosnesane 713
Special Variables ..issisisisisoiesio sissicisississssssssss 15
Sample PLOGram .je.iesis sisicisiesic s oissciaioassssssasses 18
The Macrol LIDTATY. sieieisisisisiorsloymio sjorsialelets’s s sla e oisois 19

VIII. TECHNICAL INFORMATION +ccccccccccscccccccscsssscccs 8L
General Information s eissiseesssssssssssssassess Sl
MERLIN MemOTry Map «cccececoscecccsocscsoscsasass 83
Symbol, TADLe. ¢.seisieieic cieoioioieinioisioioieis sialoia sis sisais sises 85
Using MERLIN with Shift Key ModsS eececscccccess 85
Using MERLIN with 80 Column Boards e.cscecesccecs 86
The CONFIGURE ASM Program .c.cceececcocessccsccces 87
ErroriMessapess cvicleloieie tulole e ciotratelols ofsls sislats elala ele's 89

BAD OPCODE «cesvccesccscsccossenssseansssnss 89
BAD ADDRESS MODE «cccecocccccccsssnccccocces 89
BAD BRANCH ¢ccccvecoccccsssscscccesscscnsses 89
BAD OPERAND ¢ccccocosoccsccccscsacsosccscesse 89
DUPLICATE SYMBOL cccccossccccscsacsccncscses 90
MEMORY FULL .o oicsississssssanesssssevess 90
UNKNOWN LABEL ¢eeccccecccccocsscssssssscassss 90
NOT MACRO oicioeisiniseissiosio sicis o ssie sistaissis s cnsns 90
NESTING ERROR - vic eie sicsio sis's oiasiaisisteis sisss soses 90
BADS “PUT " iiaiciolsieteisheisisioisisteisis siolsiorsis sio sl sieisae 90
BADEMSAV " o 0o cie sl sie eisisiaisis s sle sisrelstiisie w siosiene 9l
BADSTINPUTI 1S o icte e e ciaicialaie siarsicrsis sistare oo sioislsie siel 91
BREAK cioisieioioicisisr0/sisisininie o0 oiie isls s sisis s/ a0 0 a8 si0 sis O
BADPTABELS L iie ot cleiatole als olo/olsibyeiatolote o ais aie oie sta 9L
Special Note — MEMORY FULL EYrors eeceeceeeeceeess 91

MERLIN Users Manual TABLE OF CONTENTS

IX.c) SOURCERORS eicie elaieioie/eisialoicleloteisisiotale aials/e olaiste lals ol o o/eininia nie
Introduction cecceccccccccccccccsscncccssccancs

Usdngs SOURCEROR N e e e e e s eoie s
Commands Used in Disassembly ccccccecccccccccss

Command DeSCriptions eesceecesscsccccssccsanssne

(EdIS B eie et e s oketo's falwislnakorets totalile s foi olora shviorss
(EVEII 58500 0nn G 006500500 40 3500 06006 0000
(M anEU L) 4550 dpaa Ao 0un oD o ot a0 oB0 000 S
CHEX)E Sic /o eic aienioisie s elcsis sisiostalsisisiais s cisisenisse
)] 5500506508000 30 8.0 (e e (0 01000 010 Ot
(TR 5.3 5605000 59060 50 00 58 B0 Lo B0 G006 G oG
Housekeeping CommandsS ee.ceceececescossccscsccsccas
/5 (CanCELYE wiv e aletots oistaro e late o <ratoletatete o lslsrata s snelois

L ARG DT i 00 o6 10 BIE 016 D0 000G 0 B 0K 10 S0 SO0

I UOEL N 5 55 5 00 i O 6 O 15 GO B S S DI
Final. Proeessing. .felclcolcleloleis cicio sicislaisiois o o o/sraio sini/e
Dealing with the Finished Source «....coeeececes
The Memory Full MeSSage! <.« e e eisseiesionissiosiosonss
The LABELER: PEOZTAUl: «ie eicle:e sie sie slsisioislois sis oo s vis sls
Labeler: COMMANAS: .« o olele oiote's's s siosioisisisisio sis sis sis sis s e
TSN & A0 0.0 00 A4 8.0 10 A0 510 G 0 0.0 40 0.0 JI6 .6 0060
D:DELETE LABEL(S) ccccescococcccsceccsscons
ATADDESEABELR 106 o sitciec cle ale s shoisaisiols sisisiv oiosle s

Ek FREESSPACERE o et ool IS el o oo eioroaioie
U:UNLOCK SRCRR:O0BJ coececcccccceccsscccsoncs

=HEm2Zn

X. SWEET 16 — INTRODUCTION .cccceccecccscocscscscsccasss
LisEingeiil &« ciotaie sis siormiere stetoate st ol bttt e srsis e st
LIStInp =721 < oicivieioisisieivin oisicloie ofele s siolcleloie siaiole o's s s ots
AR 8] o 00 00 00 00 0D 0.0 B0 G DT THG L 0 9150 1.0 Y0 1.0

XI. SWEET 16 — A Pseudo 16 Bit MicroprocesSSOr ccececeececs.
Description .ecececesccesccscssccencccnsscnscns
Instruction Descriptions «ccececeoceccececccanes
Sweet 16 Opcode SUMMATY ceecececocosccssscsascsas

Regl StetiOPSE cloisicicis cio s oiciels cfst late s sisrs steiore e
NonsregisterlORPSEG < tis vic's e als isleis oo oisin aaisiainiss
Register Instructions ccccececececcccccecscscocans
SET S oo elers o aaenisnionisainsssionissssssnisssssisnss
LOADR eie sivie s slaio mis s s sre ujsinje siersls siate sishais »je sie o

STORE - ccccesncsncssensaccsnssscsssssnssssss

LOAD INDIRECT cccocccssscosccscsccsccoscons

103

110

112
112
113
113
113
114
114
114

MERLIN Users Manual

TABLE OF CONTENTS

STORE INDIRECT «cccccoccoccscscasosccnccsss
LOAD DOUBLE-BYTE INDIRECT cccososcccccccscs
STORE DOUBLE-BYTE INDIRECT :cccoccccceccans
POP. INDIREGTMR ik ials oot ofeiotsle sialolstolate 51 oo sis oo
STORE POP INDIRECT «ccoccscscccccscnsccccse
ADDE Ee he e ol lers ke inteiniallotals s s tolotoka s mte o letala alalalolos
SUBTRACT S Kol latotereioretntoia telfoletolaolataletaiole sl ele nta ole
POP DOUBLE-BYTE INDIRECT .ceccoccccccsccscss
COMPARE «evcesecccccccacossccssssasasnsncns
INCREMENTE ol el ioic o re=nnls st nizisiotin.s o /e o\ s sis oin slsiais
DECREMENT «ceceeececsccosscooasooscssssnsnnnse
Non—Register InsStructions sceccccscccccccccnses

RETURN
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH
BRANCH

TO

G502 MODER oo wiebiatersiolsia ol sie sieisiereioisis

ALWAYS ccccovcccccccosscscsssccscsnns

IF
IF
IF
IF
IF
IF
IF
IF

NO CARRY .ccececsncccsccncsacanss
CARRY SET cccoecocccccscsncsccsse
PLUS cccsscccscccconcosnosansnssons
MENUSHe/s e/ o e ais o alsiatalniels oiainin o sis oo s
ZEROUE @ s/ slafstelatolais olotayn niaieie slslels oioie e ol
NONZERO cecsovcscccccoscocccsscsse
MIENUS S ONE Rekatatolehe otstotelo alatei st s ohelsio s e
NOT MINUS ONE ¢ececvcccccccnccnns

BRE ARGt iataietsioto slats aksokaiore] etole taistsia (o }o'o lo el alo s el nre
RETURN FROM SWEET 16 SUBROUTINE «.ceveecoee
BRANCH TO SWEET 16 SUBROUTINE «ccoceocecees
Theory of Operation «ecesceccscsccccccscccccnsns
When is an RTS really a JSR? cceeeccccococccsss
OBcode, Subroutines, .. Jeretticlclclotelcias oiosio se v sictais o
Memorys A1l ocat 10N ia aisis sisie sis s ieis e slsoisle sltialsss sie sios
User ModiEICatiONS cieieicisiohsis sisieielsls s ole s /s s eraie s e sis s

XII. APPLESOFT LISTING INFORMATION cccccccccccccccccccss
Steps to list the Applesoft Disassembly

XITI. GLOSSARY «ccicsiosisososnsiosesisecssasssoscsissssssssssas

XIV.

SAMPLE. PROGRAMS | o cicsicicisincsiasisloiniasolneiessiseessasisnsas
The Floating Point Routines ccceceececescccoccocss
The Multiply/Divide ROULINES ceocscscscsccccsss
BRDEGRS S e s elalelate olelis/alole aatshals s Vs sis olniotnliohe alslaislelore) s st
MEGOUT . oo snsisnsniosnsinnsesnsionssssisiisssessssecos
B GRS HA 55 6.0 50 510 D G100 5.0 060 G0 G 90 10 Ok) O D0 GO O G 0

Game Paddle Printer Driver cccecsceccccccccsccss

115
115
116
116
117
118
118
119
119
120
120
121
121
121
122
122
123
123
123
124
124
124
124
125
125
126
127
127
128
129

131
132

135

141
141
141
141
142
142
142

MERLIN Users Manual TABLE OF CONTENTS

XV. UTILITIES ccccscscccccscsscccsocscscacssoscscsacscasscae
FOrmatter cccecccsccsosccoscsscsccssscasassssssass
GIETEENT 70 oo 00 010 010 000 00 00 G0 GG 0D B 00 O/C /0 G 0 0 B0 G
XREF, XREF.XL and STRIP .cccccsccscocascsccsons

Sample MERLIN Symbol Table Printout
Sample MERLIN XREF Printout ecceocecececsces
XREF InsStructions .cececececcccscssccccsnccsns
CAUTIONS for the use Of XREF cccccsceccccces
XREF .XL Instructions ecececscccccosccccscas
CAUTIONS for the use Of XREF XL ccccccccsss
Special Instructions for XREFing Applesoft.
XREF A and XREF A.XL cccececcccsccscncosces
STRIP ciccoscscscocasossscasessscsanisssesss
PRINTFILER ccecocccscscccascssccccacscccssassnsess
Applicatiions! e olccicialcicis cieicicisiciels ciclo sis sieis sisreinte
How To Use PRINTFILER ccccececccccccccncces
Changing PRINTFILER”S Options .ccececesccececs
Benchmarking PRINTFILER ccccccccccccccscses
Changing PRINTFILER Options eececececeececcccccs
CYCLE TIMER ccccccccsccccsccsccoscssssscssscsscncs

65C02 Assembler Option cecececeececcccccccccscccsss

208 TR 0 00 0o 00 00 00 0:0 0 50 00 00T GO 10 00 50 00 B0 G0 00 0.0 50 85

145
145
146
147
148
148
149
150
152
152
153
154
154
155
155
155
156
157
157
158

161

187

MERLIN Users Manual INTRODUCTION

INTRODUCTION

Assembly Language Whys and Wherefores

Some of you may ask "What is Assembly Language?” or "Why do I
need to use Assembly Language; BASIC suits me fine." While
we do not have the space here to do a treatise on the sub-
ject, we will attempt to briefly answer the above questions.

Computer languages are often referred to as "high level"” or
"low level” languages. BASIC, COBOL, FORTRAN and PASCAL are
all high level languages. A high level language is one that
usually uses English-like words (commands) and may go through
several stages of interpretation or compilation before final-
ly being placed in memory. The time this processing takes is
the reason BASIC and other high level languages run far
slower than an equivalent Assembly Language program. In
addition, it normally consumes a great deal more available
memory.

From the ground up, your computer understands only two
things, on and off. All of its calculations are handled as
addition or subtraction but at tremendously high speeds. The
only number system it comprehends is Base 2 (the Binary Sys-—
tem) where a 1 for example is represented by @@@@@@#@1 and a 2
is represented by @@0¢@¢@@14.

The 6502 microprocessor has five 8-bit registers and one 16-
bit register. All data is ultimately handled through these
registers by a machine language program. But even this
lowest of low-level code requires a program to function
correctly. This “program” is hard wired within the 6502
itself. The microprocessor program functions in three
cycles: It fetches an instruction from computer memory,
decodes it and executes it.

MERLIN Users Manual INTRODUCTION

These instructions exist in memory as one, two or three byte
groups. A byte contains 8 binary bits of data and is usually
notated in hexadecimal (base 16) form. Some early microcom-—
puters allowed data entry only through 8 front panel
switches, each of which when set on or off would combine to
produce one binary byte. This required an additional program
in the computer to monitor the switches and store the byte in
memory so that the 65¢2 could interpret it.

At the next level up, the user could enter his/her data in
the form of a three character mnemonic (the "m" is silent), a
type of code whose characters form an association with the
microprocessor operation. For example: LDA is a mnemonic
which represents "LoaD the Accumulator”. The standard Apple
II has a built-in mini-assembler that permits simple Assembly
Language programming.

But even this is not sufficient to create a long and compre-
hensive program. In addition to the use of a three character
mnemonic, a full-fledged assembler allows the programmer to
use labels, which represent an as yet undefined area of
memory where a particular part of the program will be stored.
In addition, an assembler will have a provision for 1line
numbers, similar to those in a BASIC program, which in turn
permits the programmer to insert lines into the program and
perform other editing operations. This is what MERLIN is all
about.

Finally, a high level language such as BASIC is itself an
assembly program which takes a command such as PRINT and
reduces it by tokenizing to a single byte before storing it
in memory.

Before using this or any other assembler, the user is expect-
ed to be somewhat familiar with the 6502 architecture, modes
of addressing, &c. This manual is not intended to teach
Assembly Language programming. Many good books on 6502
Assembly programming are available at your local dealer; some
are referenced later in this section.

MERLIN Users Manual INTRODUCTION

Backgrounds and Features

MERLIN is a "Ted-based” editor-assembler. This means that
while it is essentially new from the ground up, it adheres to
and follows almost all of the conventions associated with TED
II+, in terms of the command mnemonics, pseudo-ops, &c.

The original TED ASM was written by Randy Wiggington and Gary
Shannon. It has been widely distributed "under the counter”
by user groups and individuals, under many names, and in a
variety of versions. Seemingly, each person added his own
enhancements and improvements. MERLIN is no exception. Rep-
resenting a major step forward, with the addition of macro
capability, MERLIN appears on the scene now as one of the
most advanced and sophisticated editor-assemblers for the
Apple II, yet retains all of the easy-to-use features of TED
that make it desirable to a beginner in assembly language
programming.

Significant changes incorporated in MERLIN, in addition to
macros, include the use of the logical operators AND, OR, and
EOR, the math operator for division, the ability to list with
or without line numbers, and substantially faster editing.
Similarly, the edit module now includes many additional com—
mands to facilitate editing, and the "Read" command allows
any Apple text file to be read into the edit buffer, thus
permitting the use of source files from other assemblers,
such as the DOS Tool Kit“s.

MERLIN assumes that your system has at least 48K memory and
operates under DOS 3.3. BEWARE of "custom" DOS”s. MERLIN
does an automatic MAXFILES 2 upon entry, then reverts to the
usual value on exit.

MERLIN Users Manual INTRODUCTION

Suggested Reading

SYSTEM MONITOR - Apple Computer, Inc. Peeking at Call-
Apple, Vol I.

APPLE II MINI-ASSEMBLER - Apple Computer Inc. Peeking at
Call-Apple Synertek Programming Manual., Synertek 65@@-2@.

PROGRAMMING THE 65@¢2 - Rodnay Zaks, Sybex C-2(2.

THE APPLE MONITORS PEELED - WM. E. Dougherty, Apple Coumputer,
Inc.

A HEX ON THEE - Val J. Golding, Peeking at Call-Apple, Vol.
II.

FLOATING POINT PACKAGE - Apple Computer, Inc., The Wozpak I1

FLOATING POINT LINKAGE ROUTINES - Don Williams, Peeking at
Call-Apple Vol I

APPLE II REFERENCE MANUAL - Apple Computer, Inc.

EVERYONE“S GUIDE TO ASSEMBLY LANGUAGE - by Jock Root

A continuing series of tutorial articles in SOFTALK magazine.
An excellent introduction, easy-to-follow for the beginning
assembly language programmer.

ASSEMBLY LINES: THE BOOK - by Roger Wagner

A compilation of the first 18 issues of the Assembly Lines
series. In addition, the text has been extensively edited
and a unique encyclopedia-like appendix added. This appendix
shows nect only the basic details of each 65@2 command, but
also a brief discussion of its most common uses along with
concise, illustrative listings.

CONVERTING BRAND X TO BRAND Y - by Randall Hyde
Apple Orchard, Volume 1, No.l, March/April 8@. Useful notes
and cross references on converting among assemblers.

MERLIN Users Manual INTRODUCTION

CONVERTING INTEGER BASIC PROGRAMS TO ASSEMBLY LANGUAGE
by Randall Hyde
Apple Orchard, as above.

HOW TO ENTER CALL - APPLE ASSEMBLY LANGUAGE LISTINGS
Call-APPLE, Volume IV, No.l, January 81.

MACHINE TOOLS
Call-APPLE in Depth, No. 1

MERLIN Users Manual SYSTEM REQUIREMENTS

SYSTEM REQUIREMENTS

48K APPLE][(16K RAM CARD for 64k MERLIN)
or APPLE //e

80 COLUMN BOARD (optional)

LOWER CASE BOARD (optional)

Hardware Compatibility List

* % % ¥ %k N ¥ % o

* % %

ALS SMARTERM 8¢ COLUMN BOARD

APPLE //e 80 COLUMN BOARD

FULL-VIEW 8@ - 8@ COLUMN BOARD

M & R SUP"R”TERMINAL 8¢ COLUMN BOARD
MICROMAX VIEWMAX 80 — 8@ COLUMN BOARD
VIDEX ULTRATERM

VIDEX VIDEOTERM

VISTA VISION 8@ - 8@ COLUMN BOARD
WIZARD 8@ - 8@ COLUMN BOARD

ANDROMEDA 16K BOARD
MICROSOFT 16K RAM BOARD
OMEGA MICROWARE RAMEX 16 - 16K RAM BOARD

NOTE: MERLIN has been tested with the cards/boards listed

above. The

author makes no guarantees with respect to the

operation of MERLIN with any 8@ column boards not listed.

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

BEGINNERS GUIDE TO USING MERLIN

By T. Petersen

Notes and demonstrations for the beginning MERLIN programmer.

Introduction

The purpose of this section is not to provide instruction in
assembly language programming. It is to introduce MERLIN to
programmers new to assembly language programming in general,
and MERLIN in particular.

Many of the MERLIN commands and functions are very similar in
operation. This section does not attempt to present demon—
strations of each and every command option. The objective is
to clarify and present examples of the more common opera-
tions, sufficient to provide a basis for further independent
study on the part of the programmer.

A note of clarification:

Throughout the MERLIN manual, various uses are made of the
terms "mode"” and "module”.

In this section, "module" refers to a distinct computer
program component of the MERLIN system. There are four
MODULES:

1. The EXECUTIVE
2. The EDITOR
3. The ASSEMBLER
4. The SYMBOL TABLE GENERATOR
Each module is grouped under one of the two CONTROL MODES:

1) The EXECUTIVE, abbreviated EXEC and indicated by the
“%° prompt.

2) The EDITOR, indicated by the “:” prompt.

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

EXECUTIVE CONTROL MODE
Executive Module

EDITOR CONTROL MODE
Editor Module
Assembler Module
Symbol Table Generator Module

The term "mode"” may be used to indicate either the current
control mode (as indicated by the prompt) or alternatively,
while in control mode and subsequent to the issuance of an
entry command, the system is said to be “in [entry command]
mode” . For example, while typing in a program after issuing
the ADD command, the system is said to be “in ADD mode”.

Terminating [entry command] mode returns the system to con-
trol mode.

Input

Programmers familiar with some assembly and higher-level
languages will recall the necessity of formatting the input,
i.e. labels, opcodes, operands and comments must be typed in
specific fields or they will not be recognized by the
assembler program.

In MERLIN, the TABS operator provides a semi-automatic
formatting feature.

When entering programs, remember that during assembly each
space in the source code causes a tab to the next tab field.
As a demonstration, let”s enter the following short routine.
Steps from the very beginning:

1. BRUN MERLIN or boot the MERLIN disk.

2. When the “%” prompt appears at the bottom of the EXEC

mode menu, type “E”. This instantly places the system in
EDITOR control mode.

10

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

3. Since we are entering an entirely new program, type “A”
at the “:” prompt and press RETURN (A = ADD). A “1°
appears one line down and the cursor is automatically
tabbed one space to the right of the line number. The
“1° and all subsequent line numbers which appear after
the RETURN key is pressed serve roughly the same purpose
as line numbers in BASIC except that in assembly source
code, 1line numbers are not referenced for jumps to sub-
routines or in GOTO-like statements.

4. On line 1, enter an “*° (asterisk). An asterisk as the
first character in any line is similar to a REM statement
in BASIC - it tells the assembler that this is a remark
line and anything after the asterisk is to be ignored.
To confirm this, type the title “DEMO PROGRAM 1° after
the asterisk and hit the RETURN key.

5. After return, the cursor once again drops down one line,
a “2° appears and the cursor skips a space.

6. Now, hit the space bar once and type “OBJ”, space again,
type “$30@°, and hit RETURN. Note that in most cases the
“OBJ” pseudo-op is neither required nor desirable.

7. On line 3, perform the same sequence but for ORG: space,
type “ORG”, space, type “$30@", RETURN.

The above two steps instruct the assembler to place the
following program both physically (with OBJ) and 1logically
(with ORG) at $3¢0.

8. On line 4, do not space once after the line number. Type
“BELL”, space, “EQU”, space, “$FBDD”, RETURN.

This defines the label BELL to be equal to hex FBDD. This
type (use) of a label is known as a constant. Wherever BELL
appears in an expression, it will be replaced with $FBDD.
Why don"t we just use “$FBDD”? For one thing, “BELL” is
easier to remember than “$FBDD” (making “BELL” in effect a
mnemonic). Also, if the location of BELL were to change, all
that needs changing is the “EQU” statement, and not a mess of
“$FBDD” s.

11

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

9. Line 5 - Type “START”, space “JSR”, space “BELL”, space,
“3° (semicolon), “RING THE BELL”, RETURN. Semicolons are
a convention often used within command lines to mark the
start of comments.

1¢. Line 6 - “DONE”, space, “RTS”, RETURN.
11. The program has been completely entered, but the system
is still in ADD mode. To exit ADD, just press RETURN.

The “:” prompt reappears at the left of the screen,
indicating that the system has returned to control mode.

12. The screen should now appear like this:

1 *DEMO PROGRAM 1
2 OBJ $3¢¢

3 ORG $3¢0

4 BELL EQU $FBDD

5 START JSR BELL sRING THE BELL
6 DONE RTS

Note that each string of characters has been moved to a
specific field. There are four such fields, not including
the line numbers on the left.

Field Number...

One is reserved for labels. BELL, START and DONE are
examples of labels.

Two is reserved for opcodes, such as the MERLIN pseudo-
opcodes OBJ, ORG and EQU, and the 65@2 opcodes JSR and
RTS.

Three is for operands, such as $3@@, S$FBDD and, in this
case, BELL.

Four will contain comments (preceded by ";").
It should be apparent from this exercise that it is not

necessary to input extra spaces in the source file for
formatting purposes.

12

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

In summary, after the line numbers:

1) Do not space before a label. Press space once after
label (or if there is no label, once after the line
number) for the opcode.

2) Space once after the opcode for the operand. Space
once after the operand for the comment. If there is
no operand, type a space and a semicolon.

System and Entry Commands

MERLIN has a powerful and complex built-in editor. Complex
in the range of operations possible but, after a 1little
practice, remarkably easy to use.

The following paragraphs contain only minor clarifications
and brief demonstrations on the use of both sets of commands.
All System and Entry commands are used in EDITOR Control Mode
immediately after the “:” prompt.

CTRL-X, CTRL-C or a RETURN as the first character of a line
exits the current [entry command] mode and returns the system
to control mode when ADDing or INSERTing lines. CTRL-X or
CTRL-C exits edit mode and returns the system to control mode
after Editing lines.

The other System and Entry Commands are terminated either
automatically or by pressing RETURN.

Inserting and deleting lines in the source code are both
simple operations. The following example will INSERT three
new lines between the existing lines 4 and 5.

1. After the “:” prompt, type “I° (INSERT), the number “57,
and press RETURN. All 1inserted 1lines will precede
(numerically) the line number specified in the command.

2. Type an asterisk, and press RETURN. Note that INSERT
mode has not been exited.

13

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

Enter one space, type “TYA”, and press RETURN.
On the screen is the following:

:1I5

* %

TYA

0N W

Hit RETURN and the system reverts to CONTROL mode (“:7
prompt) .

LIST the source code.

s L
1 *DEMO PROGRAM 1
2 OBJ $300¢
3 ORG $300
4 BELL EQU SFBDD
5 *
6 *
7 TYA
8 START JSR BELL ;RING THE BELL
9 END RTS

The three new lines (5,6, and 7) have been inserted, and the
subsequent original source lines (now lines 8 and 9) have
been renumbered.

Using DELETE is equally easy.

1.

In control mode, input “D7°, and RETURN. Nothing new
appears on the screen.

LIST the source code. The source listing is one line
shorter. You“ve just deleted the “TYA” 1line, and the
subsequent lines have been renumbered.

It is possible to delete a range of lines in one step.

14

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

1. 1In control mode, input “D5,6” and RETURN.
2. LIST the source.

Lines 5 and 6 from the previous example, which contained the
inserted asterisk comments, have been deleted, and the sub-
sequent lines renumbered. The listing appears the same as in
the subsection on INPUT, Step 12.

This automatic renumbering feature makes it IMPERATIVE that
when deleting lines you remember to begin with the highest
line number and work back to the lowest.

The Add, Insert, or Edit commands have several sub-—commands
comprised of CTRL-characters. To demonstrate using our BELL
routine:

1. After the “:” prompt, enter “E” (the EDIT command) and a
line number (use “6° for this demonstration), and hit
RETURN. One line down the specified line appears in its
formatted state:

6 DONE RTS
and the cursor is over the “D” in “DONE”~.
2. Type CTRL-D. The character under the cursor disappears.
Type CTRL-D again and yet a third and fourth time. “DONE~
has been deleted, and the cursor is positioned to the

left of the opcode.

3. Hit RETURN and LIST the program. In line 6 of the source
code, only the line number and opcode remain.

4. Repeat step 1 (above).
5. This time, type CTRL-I. Don"t move the cursor with the
space bar or arrow keys. Type the word “DONE”, and

RETURN.

6. LIST the program. Line 6 has been restored.

185

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

If you are editing a single 1line, hitting RETURN alone
returns you to the control mode prompt. In step 1 (above),
if you had specified a range of lines (example: “E3,67) while
issuing the EDIT command, RETURN would have called up the
next sequential line number within the specified range. As
the 1lines appear, you have the options of editing using the
various sub-commands, pressing RETURN which will call up the
next 1line, or exiting the EDIT mode using CTRL-C. NOTE:
hitting RETURN will enter the eantire line in memory, exactly
as it appears on the screen, regardless of the current cursor
position.

The other sub-commands (CTRL-characters) used under the EDIT
command function similarly. Read the definitions in Section
3 and practice a few operations.

Assembly

The next step in using MERLIN is to assemble the source code
into object code.

P

After the prompt, type the edit module system command ASM
and hit return. On your screen is the following:

UPDATE SOURCE (Y/N)?

Type N, and you will see:

ASSEMBLING
1 *DEMO PROGRAM 1
2 0BJ $3¢¢
3 ORG $30¢
4 BELL EQU $FBDD
@300 20 DD FB 5 START JSR BELL ;RING THE BELL
$3¢3 69 6 DONE RTS

-—-END ASSEMBLY, 4 BYTES, ERRORS: O

16

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

SYMBOL TABLE — ALPHABETICAL ORDER
BELL =$FBDD ? DONE =$0303

? START =5$0300

SYMBOL TABLE - NUMERICAL ORDER

2 START =$0300 ? DONE =$03¢3

BELL =$FBDD

If instead of completing the above listing, the system beeps
and displays an error message, note the line number refer-
enced in the message, and press RETURN until the "--END
ASSEMBLY..." message appears. Then refer back to the sub-
section on INPUT and compare the listing with step 12. Look
especially for elements in incorrect fields. Using the edit-
ing functions you“ve learned, change any lines in your list-
ing which do not look like those in the listing in step 12 to
what they should, then re-assemble.

If all went well, to the right of the column of numbers down
the mwmiddle of the screen is the now familiar, formatted
source code.

To the left of the numbers, beginning on line 5, is a series
of numeric and alphabetic characters. This is the object
code - the opcodes and operands assembled to their machine
language hexadecimal equivalents.

Left to right, the first group of characters is the routine”s
starting address in memory (see the definition of OBJ and ORG
in the section entitled "Pseudo Opcodes - Directives").
After the colon is the number “2¢~. This is the one-byte
hexadecimal code for the opcode JSR.

NOTE: the 1label “START” is not assembled into object code;
neither are comments, remarks, or pseudo-ops such as OBJ and
ORG. Such elements are only for the convenience and utility
of the programmer and the use of the assembler program.

17

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

The next two bytes (each pair of hexadecimal digits is one
byte) on line 5 bear a curious resemblance to the last group
of characters on line 4; have a look. In line 4 of the
source code we told the assembler that the label “BELL”
EQUated with address $FBDD. In line 5, when the assembler
encountered “BELL” as the operand, it substituted the speci-
fied address. The sequence of the high and low-order bytes
was reversed, turning $FBDD into DD FB, a 6502 microprocessor
convention.

The rest of the information presented should explain itself.
The total errors encountered in the source code was zero, and
four bytes of object code (count the bytes following the
addresses) was generated.

Saving and Running Prograas

The final step in using MERLIN is running the program. Be-
fore that, it is always a good idea to save the source code.
Use the SAVE SOURCE command. Follow that with an OBJECT CODE
SAVE. Note that OBJECT CODE SAVE must be preceded by a suc-
cessful assembly.

1. Return to control mode if necessary, and type “Q” RETURN.
The system has quit EDITOR mode and reverted to EXECUTIVE
(EXEC) mode. If the MERLIN system disk is still in the
drive, remove it and insert an initialized work disk.

After the “%° prompt, type “S” (the EXEC mode SAVE SOURCE
FILE command). The system is now waiting for a filename.
Type “DEMOl”, RETURN. After the program has been saved,
the prompt returns.

2. Type ~C” (CATALOG) and look at the disk catalog. The
source code has been saved as a binary file titled
"DEMO1.S". The suffix ".S" is a file-labelling
convention which indicates the subject file is source
code. This suffix is automatically appended to the name
by the SAVE SOURCE command.

18

MERLIN Users Manual BEGINNERS GUIDE TO USING MERLIN

3. Hit RETURN to return to EXEC mode and input “0°, for
OBJECT CODE SAVE. The object file should be saved under
the same name as was earlier specified for the source
file, so press "Y" to accept “DEMOl” as the object name.
There is no danger of overwriting the source file because
no suffix is appended to object code file names.

While writing either file to disk, MERLIN also displays the
address parameter, and calculates and displays the length
parameter. It°s a good practice to take note of these.
Viewing the catalog will show that although the optional A$
and L$ parameters were displayed on the EXEC mode menu, they
were not saved as part of the file names. If you”d prefer to
have this information in the disk catalog, use the DOS RENAME
command . Make sure no commas are included in the new file
name.

Return to EDITOR mode (press “E”), type “MON", RETURN and the
monitor prompt “*° appears. Enter “3@@G”, RETURN. A beep is
heard. The demonstration program was responsible for it. It
works!

Now you can return to the EXEC by typing CTRL-Y and hitting
RETURN.

Making Back-up Copies of MERLIN

The MERLIN diskette is unprotected and copies may be made
using any copy utility. It is highly recommended that you
use ONLY the BACK-UP copy of MERLIN in your daily work, and
keep the original in a safe place. All files and also the
side containing SOURCEROR.FP can be moved to any DOS 3.3
diskette using the FID utility program from Apple”s System
Master Diskette.

19

MERLIN Users Manual EXECUTIVE MODE

EXECUTIVE MODE

The EXECUTIVE mode is the program level provided for file
maintenance operations such as loading or saving code or
cataloging the disk. The following sections summarize each
command available in this mode.

C:CATALOG

When you press "C", the CATALOG of the current diskette will
be shown. The word "COMMAND:" is then printed and MERLIN
will let you enter a DOS command. This facility is provided
primarily for locking and unlocking files. Unlike the LOAD
SOURCE, SAVE SOURCE, and APPEND FILE commands, you must type
the ".S" suffix when referencing a source file. Do not use
it to load or save files. If you do not want to give a disk
command, just hit RETURN. Use CTRL-X to cancel a partially
typed command. If you type CTRL-C RETURN after "COMMAND:",
you will be presented with the EXEC mode prompt "%". You can
then issue any EXEC command such as "L" for LOAD SOURCE.
This permits you to give an EXEC mode command while the
catalog is still on the screen. In addition, if CTRL-C is
typed at the "CATALOG pause” point, printing of the remainder
of the catalog is aborted.

L:LOAD SOURCE

This 1is wused to load a binary source file from disk. You
will be prompted for the name of the file. You should not
append ".S" since MERLIN does this automatically. If you
have hit "L" by mistake, just hit RETURN twice and the com-
mand will be cancelled without affecting any file that may be
in memory.

21

MERLIN Users Manual EXECUTIVE MODE

After a LOAD SOURCE (or APPEND SOURCE) command, you are
automatically placed in the editor mode, just as if you had
hit “E*. The source will automatically be loaded to the
correct address. Subsequent LOAD SOURCE or SAVE SOURCE com-—
mands will display the last used filename, followed by a
flashing "?". If you hit the "Y" key, the curreant file name
will be used for the command. If you hit any other key (such
as RETURN) the cursor will be placed on the first character
of the filename, and you may type in the desired name.
RETURN alone at this time will cancel the command.

S:SAVE SOURCE

Use this to save a binary source file to disk. As in the
load command, you do not include the suffix ".S" and you can
hit RETURN to cancel the command. NOTE: the address and
length of the source file are shown on the MENU, and are for
information only. You should not use these for saving; the
assembler remembers them better than you can and sends them
to DOS automatically. As in the LOAD SOURCE command above,
the last loaded or saved filename will be displayed and you
may type "Y" to save the same filename, or any key for a new
file name.

A:APPEND FILE

This loads in a specified source file and places it at the
end of the file currently in memory. It operates in the same
way as the LOAD SOURCE command, and does not affect the
default file name. It does not save the appended file; you
are free to do that if you wish.

22

MERLIN Users Manual EXECUTIVE MODE

D:DRIVE CHANGE

When you hit "D", the drive used for saving and loading will
change from one to two or two to one. The currently selected
drive is shown on the menu. When MERLIN is first booted, the
selected drive will be the one used by the boot. There is no
command to specify slot number, but this can be accomplished
by typing "C" for CATALOG which will display the current
disks directory. Then give the disk command "CATALOG,Sn",
where ua is the slot number. This action will catalog the
newly specified drive.

E:ENTER ED/ASM

This command places you in the EDITOR/ASSEMBLER mode. It
automatically sets the default tabs for the editor to those
appropriate for source files. If you wish to use the editor
to edit an ordinary text file, you can type TABS<KRETURN> to
zero all tabs.

0:SAVE OBJECT CODE

This command is valid only after the successful assembly of a
source file. In this case you will see the address and
length of the object code on the menu. As with the source
address, this is given for information only.

NOTE: the object address shown is that of the program”s ORG
(or $80@@ by default) and not that of the actual current
location of the assembled code (which is $80@¢@# or whatever
OBJ you have used). When using this command, you are asked
for a name for the object file. Unlike the source file case,
no suffix will be appended to this name.

23

MERLIN Users Manual EXECUTIVE MODE

Thus you can safely use the same name as that of the source
file (without the ".S" of course). When this object code is
saved to the disk its address will be the correct one, the
one shown on the menu. When later you BLOAD or BRUN it, it
will load at that address, which can be anything ($300,$80¢,
&c). There is usually no need to use an OBJ in the source
code, wunless the object code will be too long for the space
available at $8@@@ and above.

Q:QUIT

This exits to BASIC. You may re—enter MERLIN by issuing the
"ASSEM" command. This re-entry will be a warm start, which
means it will not destroy the source file currently in
Memory. This exit can be used to give disk commands, if it
is more convenient than the one provided by "C".

R:READ TEXT FILE

This reads text files into MERLIN. They are always appended
to the current buffer. To clear the buffer and start fresh,
type "NEW" in the editor. If no file is in memory, the name
given will become the default filename. Appended reads will
not do this.

When the read is complete, you are placed in the editor. If
the file contains lines longer than 255 characters, these
will be divided into two or more lines by the READ command.
The file will be read only until it reaches HIMEM, will
produce a memory error if it goes beyond, and only the data
read to that point will remain.

The READ TEXT FILE and WRITE TEXT FILE commands will include
a "T." at the beginning of the filename you specify UNLESS
you precede the filename with a space or any other character
in the ASCII range of $20 to $4@#. This character will be
ignored and not used by DOS in the actual filename.

24

MERLIN Users Manual EXECUTIVE MODE

The READ TEXT FILE and WRITE TEXT FILE commands are used to
LOAD or CREATE "PUT" files, or to access files from other
assemblers or text editors.

W:WRITE TEXT FILE

This writes a MERLIN file into a text file instead of a
binary file. The speed of the READ TEXT FILE and WRITE TEXT
FILE commands is approximately that of a standard DOS BLOAD
or BSAVE. The WRITE TEXT FILE routine does a VERIFY after
the write.

25

MERLIN Users Manual THE EDITOR

THE EDITOR

Basically there are three modes in the editor: the COMMAND
mode, the ADD or INSERT mode, and the EDIT mode. The main

one is the COMMAND mode, which has a colon (":") as prompt.

Command Mode

For many of the COMMAND mode commands, only the first letter
of the command is required, the rest being optional. This
manual will show the required command characters in UPPER
case and the optional ones in lower case. In some commands,
you must specify a line number, a range of line numbers or a
range list. A line number is just a number. A range is a
pair of 1line numbers separated by a comma. A range list
consists of several ranges separated by slashes ("/").

When the syntax for each command is given, parentheses "()"
indicate a required value. When the value or character is
optional, angle brackets "<>" are used.

Several commands allow specification of a string. The string
must be "delimited” by a non-numeric character other than the
slash. Such a delimited string is called a d-string. The
usual delimiter is single or double quote marks (° or ").

Line numbers in the editor are provided automatically. You
never type them when entering text; only when giving com-
mands. If a line number in a range exceeds the number of the
last 1line, it is automatically adjusted to the last line
number.

Control-L toggles the current case of alphabetic input any-
where within the editor. If you are in upper case, typing
CTRL-L will place you in lower, and vice versa. Upper case
is defaulted to when entering each new line. If your Apple is
not capable of displaying lower case, then all lower case
text will be displayed as upper case flashing. To change the
case of a word, type CTRL-L, then copy over the word using
the right arrow.

27

MERLIN Users Manual THE EDITOR

Hex-Dec Conversion

If you type a decimal number (positive or negative) in
the command mode, the hex equivalent is returned. If
you type a hex number, prefixed by "$", the decimal
equivalent is returned. All commands accept hex num-
bers, which is mainly convenient for the HIMEM: and SYM
commands.

HImem:

HI: (address)

HImem: sets the wupper limit for the source file and
beginning address for the OBJ file (default OBJ ad-
dress). HIMEM defaults to $8¢@@, and does not have to
be set unless you use a non-default object address.

NEW
Deletes the present source file in memory, resets HIMEM
to $8@@@ and starts fresh.

PR

PR#(P-7)

28

Same function as in BASIC. Mainly used for sending an
editor or assembly listing to a printer. DO NOT use
this to select an 8@-column card. NOTE: that PR# is
automatically turned off after an ASM command, but not
after a LIST or PRINT command.

MERLIN Users Manual THE EDITOR

USER

TABS

TABS

This does a JSR $3F5. (That is the Applesoft ampersand
vector location, which normally points to an RTS.) The
designed purpose of this command is for the connection
of wuser defined printer drivers. (You must be careful
that your printer driver does not use =zero page ad-
dresses, except the I/0 pointers and $6@ - $6F, because
this 1is 1likely to interfere with MERLIN"s heavy zero
page usage).

<number><, number><,...> <"tab character")>

This sets the tabs for the editor, and has no effect on
the assembler listing. Up to nine tabs are possible.
The default tab character is a space, but any may be
specified. The assembler regards the space as the only
acceptable tab character for the separation of labels,
opcodes, and operands. If you don”t specify the tab
character, then the last one used remains. Entering
TABS and a RETURN will set all tabs to zero.

LENgth

This gives the length in bytes of the source file, and
the number of bytes remaining before MERLIN"s HIMEM
(usually $800¢ - not BASIC HIMEM).

Where

Where (line number)

This prints in hex the location in memory of the start
of the specified line. "Where @" (or "W@") will give
the location of the end of source.

29

MERLIN Users Manual THE EDITOR

MONitor

This exits to the monitor. You may re—enter MERLIN at
the executive level by either CTRL-C, CTRL-B or CTRL-Y.
These re-establish the important zero page pointers from
a save area inside MERLIN itself. Thus CTRL-Y will give
a correct entry, even if you have messed up the zero
page pointers while in the monitor. DOS is not con-
nected when wusing - this entry to the monitor. This
facility is designed for experienced Apple programmers,
and is not recommended to beginners.

You may also re—enter the editor directly with a @G.
This re-entry, unlike the others, will use the zero page
pointers at $@PA - $OF instead of the ones saved upon
exit. Therefore, you must be sure that they have not
been altered. For normal usage, however, one of the
three CTRL"s is to be used to re-enter MERLIN.

TRuncON

When wused as an immediate command, sets a flag which,
during LIST or PRINT, will terminate printing of a line

upon finding a space followed by a semicolon. It makes
reading of source files easier on the Apple 4@ column
screen. In the assembler, when used as a pseudo-op, it

limits printing of the object code to three bytes per
line and has no effect on comments.

TRuncOFf

Quit

30

When used as an immediate command, returns to the de-
fault condition of the truncation flag (which also hap-
pens automatically wupon entry to the editor from the
EXEC mode or from the assembler). All source lines when
listed or printed will appear normal.

Exits to EXEC mode.

MERLIN Users Manual THE EDITOR

ASM

This passes control to the assembler, which attempts to
assemble the source file. First, however, you are asked
if you wish to "update the source”. This is to remind
you to change the date or identification number in your
source file. If you answer "N" then the assembly will
proceed. If you answer "Y", you will be presented with
the first line in the source containing a "/" and are
placed in EDIT mode. When you finish editing this line
and hit RETURN, assembly will begin. If you use the
CTRL-C edit abort command, however, you will return to
the EDITOR command mode, and any I/0 hooks you have
established by PR# or whatever will be disconnected.
This will also happen if there is no line with a "/"

NOTE: During the second pass of assembly, typing a
CTRL-D will toggle the list flag, so that listing will
either stop or resume. This will be defeated if a LST
opcode occurs in the source, but another CTRL-D will
override it.

Delete

Delete (line number) <range> <range list>
Delete (range)
Delete (range list)

This deletes the specified lines. Since, unlike BASIC,
the 1line numbers are fictitious they change with any
insertion or deletion. Therefore, you MUST specify the
higher range first for the correct lines to be deleted!

Replace

Replace (line number)
Replace (range)

This deletes the line number or range, then places you
into INSERT mode at that location.

31

MERLIN Users Manual THE EDITOR

List

List
List
List
List

(line number)
(range)
(range list)

Lists the source file with line numbers. Control char-
acters in source are shown in inverse, unless the list-
ing is being sent to a printer or other nonstandard
outport.

The 1listing can be aborted by CTRL-C or with "/" key.
You may stop the listing by hitting the space bar and
then advance a line at a time by hitting the space bar
again. Any other key will restart it. This space bar
pause also works during assembly and the symbol table
print out.

. [period]

/

Lists starting from the beginning of the last specified
range. For example, if you type "L1§,10¢", lines 10 to
100 will be listed. If you then use ".", 1listing will
start again at 1¢ and continue until stopped (the end of
the range is not remembered).

/ <line number>

32

This continues listing from the last line number listed,
or, when a line number is specified, from that line.
This 1listing continues to the end of the file or wuntil
it is stopped as in LIST.

MERLIN Users Manual THE EDITOR

Print

Print
Print
Print
Print

(line number)
(range)
(range list)

This is the same as LIST except that line numbers are
not added.

PRinTeR

PRinT

eR (command)

This command is for sending a listing to a printer with
page headers and provision for page boundary skips.
(The default parameters may be set up using the con-
figure program included on the MERLIN diskette.) The
syntax of this is:

PRTR slot# (string) <page header)

If the slot number used is more than seven, a JSR $3F5
(ampersand vector) is done and it is expected that the
routine there will connect a printer driver by putting
its address in locations $36-$37.

If the page header is omitted, the header will consist
of page numbers only.

THE INITIALIZATION STRING MAY NOT BE OMITTED. If no
special string is required by the printer, use a null
string (in which case a carriage return will be used).
Examples of initialization strings are CTRL-Q for IDS
printers, or CTRL-I8@N for most Apple cards.

PRTR @ (no strings required here) will allow you to see
where the page breaks occur. If an 8@ column card is in
use in slot 3, then use PRTR 3 for this.

No output is sent to the printer until a LIST, PRINT, or
ASM command is issued.

33

MERLIN Users Manual THE EDITOR

Find

Find
Find
Find
Find

(d-string)

(line number) <d-string>
(range) <d-string>
(range list) <d-string>

This 1lists those lines containing the specified string.
It may be aborted with CTRL-C or "/" key. Since the
CTRL-L case toggle works in command mode, you can use it
to find or change strings with lower case characters.

Change

Change (d-string d-string)

Change (line numbers) <d-string d-string>
Change (range) <d-string d-string>

Change (range list) <d-string d-string>

34

This changes occurrences of the first d-string to the
second d-string. The d-string must have the same de-
limiter with the adjoining ones coalescing. For ex—
ample, to change occurrences of "speling” to "spelling”
throughout the range 20,108, you would type C20,10¢
"speling"spelling”. If no range 1is specified, the
entire source file is used.

Before the change operation begins, you are asked
whether you want to change "all"” or “some". If you
select ‘“"some" by hitting the "S" key, the editor stops
whenever the first string is found and displays the line
as it would appear with the change. If you then hit
ESCAPE or any control character, the change displayed
will not be made. Any other key, such as the space bar,
will accept the change. CTRL-C or "/" key will abort
the change process.

MERLIN Users Manual THE EDITOR

COPY

COPY
COPY

MOVE

MOVE
MOVE

Edit

Edit
Edit
Edit
Edit
Edit

TEXT

(line number) TO (line number)
(range) TO (line number)

This copies the line number or range to just “below”
(numberically) the specified number. It does not delete
anything.

(line number) TO (line number)
(range) TO (line number)

This is the same as COPY but after copying, automatical-
ly deletes the original range. You always end up with
the same lines as before, but in a different order.

(d-string)

(line number) <d-string>
(range) <d-string)
(range list) <d-string)

This presents each line of the line number, range, range
list, &c, specified and puts you into the EDIT mode. If
a d-string is appended, only those lines containing the
d-string are presented. See the discussion later in this
chapter concerning the EDIT mode commands.

This converts ALL spaces in a source file to inverse
spaces. The purpose is for use on "text" files so that
it 1is not necessary to remember to zero the tabs before
printing such a file. This conversion has no effect on
anything except the editor”s tabulation.

35

MERLIN Users Manual THE EDITOR

FIX

SYM

This undoes the effect of TEXT. It also does a number
of technical housekeeping chores. It is recommended
that the command FIX be used on all files from external
sources, after which the file should be saved.

NOTE: The TEXT and FIX routines are written in SWEET 16
and are somewhat slow. Several minutes may be needed
for their execution on large files. FIX will truncate
any lines longer than 255 characters.

SYM (address)

36

MERLIN normally places the symbol table on the language
card (in bank 1 of $D@@P@F-$DFFF). This space is quite
adequate for all but gigantic programs. In case this
space 1is used up, the SYM command gives you a means to
direct the assembler to continue the symbol table in
another area. If you type SYM $90@¢, for example, and
assemble the program, when and if the symbol table uses
up its normal space, it will be continued at $9¢@@ until
it reaches BASIC HIMEM.

The SYM address must be equal to or above MERLIN”s HIMEM
and below BASIC HIMEM. If the symbol table grows beyond
the allotted space, you will get a MEMORY FULL error
during the first pass of assembly.

NOTE: The SYM address you specify will be cancelled by a
(MERLIN) HIMEM: command or by an exit to EXEC mode and
re-entry (set HIMEM: before setting up a SYM address).

MERLIN Users Manual THE EDITOR

VIDeo

ViDeo

FW (

(slot)

This command is designed to select or deselect an 8§
column board. The default coudition can be selected
using the configure program included on the MERLIN disk-—
ette. This is similar to the use of PR# in BASIC. DO
NOT use PR# to select an 8¢ column board! PR# is desig-
ned for selection of a printer ONLY. An 8@ column board
in slot 3 for example, can be selected by typing, from
the editor: VIDEO 3.

It is deselected by VIDEO @ or VIDEO $1¢ (or 16)
possibly followed by RESET. These two forms both select
the standard Apple screen, but VIDEO @ will cause all
lower case output to the screen to be converted to upper
case except lower case in the source file will be con-
verted to flashing upper case (output to a printer is
never converted). If you have a lower case adapter, you
will want to use VIDEO $1¢ (or VIDEO 16) instead of
VIDEO $# when selectng the Apple screen.

If your 8¢ column card has a software screen switch via
an escape sequence, this may be used to return to 40
column mode. This will be equivalent to "VID $1¢" and
would have to be followed by a VID @ if you don”t have a
lower case adapter. For example, use ESC CTRL-Q RETURN
on the Smarterm or ESC-Q-CTRL-X on the Sup"R"term.

Find Word)

FW (d-string)

FW (line number) <d-stringd>
FW (range) <d-string>

FW (range list) <d-string>

This is an alternative to the FIND command. It will
find the specified word only if it is surrounded, in
source, by non—-alphanumeric characters.

37

MERLIN Users Manual THE EDITOR

Therefore, FW"CAT" will find:

CAT
CAT-1
(CAT,X)

but will not find CATALOG or SCAT.

CW (Change word)

Change (d-string d-string)

Change (line numbers) <d-string d-string)
Change (range) <d-string d-string)>
Change (range list) <d-string d-string)>

This works similar to the CHANGE command with the added
features as described under FW.

EW (Edit word)

EW (d-string)

EW (line number) <d-string>

EW (range) <d-string)>

EW (range list) <d-string>

This is to EDIT as FW is to FIND.
NOTE ON DELIMITED STRINGS: For all the commands involving de-
limited strings (a d-string), the character "*" acts as a
wild card. Therefore, F"Jon"s” will find both "Jones" and
"Jonas".
VAL
VAL "expression” [like, Oh my God! Fer sure!]

This will return the value of the expression as the

assembler would compute it. All forms of 1label and
literal expressions valid for the assembler are valid

38

MERLIN Users Manual THE EDITOR

for this command. Note that labels while have the value
given them in the most recent assembly.

Examples of the use of VAL:

VAL "LABEL" Gives the address (or value)
of LABEL for the last assem-
bly done or "unknown label"”
if not found.

VAL "$10¢@g/2" returns $@80¢
VAL "Z10¢¢" returns $0@@8
VAL !"A"-"@"! returns $@@11

Add/Insert Modes

The ADD and INSERT modes in the editor act as if you are in
the edit mode, except that CTRL-R will do nothing, and the
exit from ADD mode acts as described. Hitting RETURN, for
example, will accept the entire line as shown on the screen.

Add

The Add command places you in the ADD mode, and acts
much like entering additional BASIC lines with auto line
numbering. However, you may enter lower case text (use-
ful for comments if you have a lower case adapter) by
typing CTRL-L. This acts as a case toggle, so another
CTRL-L returns you to UPPERCASE mode. To exit from ADD
mode, hit RETURN as the FIRST character of a line. You
may also exit the ADD mode by CTRL-X or CTRL-C which
also cancels the current line.

You may enter an EMPTY line by typing a space and then
RETURN. This will not enter the space into text, it
only bypasses the exit. The editor automatically re-
moves extra spaces at the end of lines.

39

MERLIN Users Manual THE EDITOR

Insert
Insert (line number)

This allows you to enter text just below (numerically)
the specified line. Otherwise, it functions the same as
the ADD command (above).

Edit Mode

After typing E in the editor, you are placed in EDIT mode.
The first line of the range you have specified is placed on
the screen with the cursor on its first character. The line
is tabbed as it is in listing, and the cursor will jump
across the tabs as you move it with the arrow keys. When you
are through editing, hit RETURN. The line will be accepted as
it appears on the screen, no matter where the cursor is when
you hit RETURN.

The EDIT commands and functions are very similar, but not
identical to those in Neil Konzen”s excellent Program Line

Editor and Southwestern Data System”s A.C.E. All commands
except CTRL-R are available in ADD and INSERT modes.

Edit Mode Commands

Control-I (insert)
Begins insertion of characters. This is terminated by
any control character except the CTRL-L case toggle,
such as the arrows or RETURN.

Control-D (delete)
Deletes the character under the cursor. It can also be

referred to as a backwards delete. The DELETE key of
the Apple //e also accomplishes the same action.

40

MERLIN Users Manual THE EDITOR

Control-F (find)
Finds the next occurrence of the character typed after
the CTRL-F. To move the cursor to the next occurrence
on the line, press the character key again.

Control-0 (insert special)

Functions as CTRL-I, except it inserts any control char-
acter (including the command characters such as CTRL-Q).

Besides enabling the insertion of control characters,
CTRL-0 also allows the user to type characters not
normally available on the Apple keyboard.

Control-0 followed by:

< gives Control

> b Control \
K " [

it ¥ \

M i]

N 5 &

0 o

k " 1

1 ¢ |

m) }

= " s

o " (whatever $FF gives on

your machine)

NOTE: If you are using a shift key modification, de-
pending on which one you have, shift-M may give upper-
case M and you will have to use CTRL-O to get the right
bracket.

41

MERLIN Users Manual THE EDITOR

Control-P (do **%*7g)
If entered as the first character of a 1line gives
32 *“s. If entered as any other character of the line,
gives 30 spaces bordered by *“s. Note that these aster-—
isks replace any characters on the line you are editing
when you press CTRL-P.

Control-C or Control-X (cancel)
Aborts EDIT mode and returns to the editor”s command
mode. The current 1line being edited will retain its
original form.

Control-B (go to line begin)

Places the cursor at the beginning of the line.

Control-N (go to line end)

Places the cursor one space past the end of the line.

Control-R (restore line)
Returns the line to its original form (not available in
ADD and INSERT modes).

Control-Q (delete line right)
Deletes the part of the line following the cursor and
terminates editing.

Return (RETURN key)
Accepts the line as it appears on the screen and fetches

the next line to be edited, or goes to the command mode
if the specified range has been completed.

42

MERLIN Users Manual THE EDITOR

The editor automatically replaces spaces in comments and
ASCII strings with inverse spaces. When listing, it converts
them back, so you never notice this. Its purpose is to avoid
inappropriate tabbing of comments and ASCII strings.

In the case of ASCII strings, this is only done when the
delimiter is a quote (") or a single quote (7). You can,
however, accomplish the same thing by editing the 1line,
replacing the first delimiter with a quote, hitting RETURN,
then editing again and changing the delimiter back to the
desired one.

In a line such as LDA #° “, you can prevent the extra tabbing
by entering the 1line with a space before the first quote
(LDA # ~ °), then typing control-N and then using the cursor
control keys to move back and delete the extra space.

43

MERLIN Users Manual THE ASSEMBLER

THE ASSEMBLER

This section of the documentation will not attempt to teach
you assembly language. It will only explain the syntax you
are expected to use in your source files, and document the
features that are available to you in the assembler.

Number Format

The assembler accepts decimal, hexadecimal, and binary
numerical data. Hex numbers must be preceded by "$" and
binary numbers by "Z", thus the following four instructions
are all equivalent:

LDA #10¢ LDA #$64 LDA #%110@100 LDA #%911¢010¢
As indicated, leading zeros are ignored. The "#" here stands
for "number” or "data", and the effect of these instructions

is to load the accumulator with the number (decimal) 1¢@.

A number not preceded by "#" is interpreted as an address.
Therefore:

LDA 10¢¢ LDA $3E8 LDA %11111¢1000

are equivalent ways of loading the accumulator with the byte
that resides in memory location $3ES8.

45

MERLIN Users Manual THE ASSEMBLER

Use the number format that is appropriate for clarity. For
example, the data table:

DA $1
DA $A
DA $64
DA $3E8
DA $271¢

is a good deal more mysterious that its decimal equivalent:

DA 1

DA 10
DA 100
DA 1000
DA 10000

Source Code Format
A line of source code typically looks like:
LABEL OPCODE OPERAND ; COMMENT

A line containing only a comment can begin with "*". Comment
lines starting with ";", however, are accepted and tabbed to
the comment field. The assembler will accept an empty line
in the source code and will treat it just as a SKP 1 instruc-
tion (see the section on pseudo opcodes), except that the

line number will be printed.

The number of spaces separating the fields is not important,
except for the editor”s listing, which expects Jjust one
space.

The maximum allowable LABEL length is 13 characters, but more
than 8 will produce messy assembly listings. A label must
begin with a character at least as large, in ASCII value, as
the colon, and may not contain any characters less, in ASCIIL
value, than the number zero.

46

MERLIN Users Manual THE ASSEMBLER

A line may contain a label by itself. This is equivalent to
equating the 1label to the current value of the address
counter.

The assembler examines only the first 3 characters of the
OPCODE (with certain exceptions such as the Sweet 16 opcode
POPD). For example, you can use PAGE instead of PAG (because
of the exception, the fourth letter should not be a D,
however) . The assembler listing will truncate the opcode to
seven letters and will not look well with one longer than
four unless there is no operand.

The maximum allowable combined OPERAND + COMMENT length is 64
characters. You will get an error if you use more than this.
A comment line by itself is also limited to 64 characters.

Expressions

To make clear the syntax accepted and/or required by the
assembler, we must define what is meant by an "expression”.
Expressions are built up from "primitive expressions” by use
of arithmetic and logical operations. The primitive expres-—
sions are:

1. A label.

2. A number (either decimal, $hex, or Z%binary).

3. Any ASCII character preceded or enclosed by quotes
or single quotes.

4. The character * (standing for the present address).

All number formats accept 16-bit data and leading zeros are
never required. In case 3, the "value" of the primitive
expression 1is just the ASCII value of the character. The
high-bit will be on if a quote (") is used, and off if a
single quote (7) is used.

The assembler supports the four arithmetic operatiomns: +, -,
/ (integer division), and * (multiplication). It also sup—
ports the three logical operations: ! (Exclusive OR), . (OR),
and & (AND).

47

MERLIN Users Manual THE ASSEMBLER

Some examples of legal expressions are:

LABEL1-LABEL2 (LABEL1 minus LABEL2)

2*LABEL+$231 (2 times LABEL plus hex 231)
12344710111 (1234 plus binary 1@111)

"K"="A"+1 (ASCII "K" minus ASCII "A" plus 1)
"@" ILABEL (ASCII "@¢” EOR LABEL)

LABEL&ST7F (LABEL AND hex 7F)

*=2 (present address minus 2)
LABEL.Z100000¢¢ (LABEL OR binary 100¢@0¢¢)

Parentheses have another meaning and are not allowed in
expressions. All arithmetic and logical operations are done
from left to right (2+3*5 would assemble as 25 and not 17).

Immediate Data

For those opcodes such as LDA, CMP, &c., which accept im-

mediate data (numbers as opposed to addresses) the immediate
mode is signalled by preceding the expression with "#". An
example is LDX #3. 1In addition:

#i<expression produces the low byte of the expression

#>expression produces the high byte of the expression

ffexpression also gives the low byte (the 65@2 does
not accept 2-byte DATA)

##/expression is optional syntax for the high byte

of the expression

The ability of the assembler to evaluate expressions such as
LAB2-LABl-1 is very useful for the following type of code:

COMPARE LDX #fEODATA-DATA-1
LOOP CMP DATA,X
BEQ FOUND ; found
DEX
BPL LOOP
JMP REJECT ;not found
DATA HEX CACFC5D9
EODATA EQU $

48

MERLIN Users Manual THE ASSEMBLER

With this type of code, you can add or delete some of the
DATA and the value which is loaded into the X index for the
comparison loop will be automatically adjusted.

Addressing Modes (6502 Opcodes)

The assembler accepts all the 65@2 opcodes with standard
mnemonics. It also accepts BLT (Branch if Less Than) and BGE
(Branch if Greater or Equal) as pseudonyms for BCC and BCS,
respectively.

There are 12 addressing modes on the 65@2. The appropriate
MERLIN syntax for these are:

ynt Example
Implied OPCODE CLC
Accumulator OPCODE ROR
Immediate (data) OPCODE #expr ADC #SF8
CMP #"M"
LDX #>LABEL1-LABEL2-1
Zero page (address) OPCODE expr ROL 6
Indexed X OPCODE expr,X LDA $E@,X
Indexed Y OPCODE expr,Y STX LAB,Y
Absolute (address) OPCODE expr BIT $300¢
Indexed X OPCODE expr,X STA $400¢,X
Indexed Y OPCODE expr,y SBC LABEL-1,Y
Indirect JMP (expr) JMP ($3F2)

Preindexed X OPCODE (expr,X) LDA (6,X)
Postindexed Y OPCODE (expr),Y STA ($FE),Y

NOTE: There is no difference in syntax for zero page and
absolute modes. The assembler automatically uses zero page
mode when appropriate. MERLIN provides the ability to FORCE
non—-zero page addressing. The way to do this is to add
anything (except "D") to the end of the opcode. Example:

LDA $1¢ assembles as zero page (2 bytes) while,
LDA: $1¢ assembles as non—zero page (3 bytes).

49

MERLIN Users Manual THE ASSEMBLER

Also, in the indexed indirect modes, only a zero page expres—
sion is allowed, and the assembler will give an error message
if the "expr” does not evaluate to a zero page address.

NOTE: The "accumulator mode" does not require an operand (the
letter "A"). Some assemblers perversely require you to put
an "A" in the operand for this mode.

The assembler will decide the legality of the addressing mode
for any given opcode. |

Sweet 16 Opcodes

The assembler accepts all Sweet 16 opcodes with the standard
mnemonics. The wusual Sweet 16 registers R@ to R15 do not
have to be "equated” and the "R" is optional. TED II+ users
will be glad to know that the SET opcode works as it should,
with numbers or labels. For the SET opcode, either a space
or a comma may be used between the register and the data part
of the operands; that is, SET R3,LABEL is equivalent to SET
R3 LABEL. It should be noted that the NUL opcode is

assembled as a one-byte opcode (the same as HEX (D) and not a
two byte skip as this would be interpreted by ROM Sweet 16.
This is intentional, and is done for internal reasons.

Pseudo Opcodes - Directives

EQU (=) (EQUate)

Label EQU expression
Label = expression (alternate syntax)

Used to define the value of a LABEL, usually an exterior
address or an often used constant for which a meaningful
name is desired. It is recommended that these all be
located at the beginning of the program. The assembler
will not permit an "equate” to a zero page number after
the label equated has been used, since bad code could
result from such a situation (also see "Variables").

50

MERLIN Users Manual THE ASSEMBLER

ORG

(set ORiGin)

ORG expression

0BJ

OBJ

PUT

PUT

Establishes the address at which the program is designed
to run. It defaults to the present value of HIMEM:
($8000 by default). Ordinarily there will be only one
ORG and it will be at the start of the program. If more
than one ORG is used, the first one establishes the
BLOAD address, while the second actually establishes the
origin. This can be used to create an object file that
would 1load to one address though it may be designed to
run at another address.

You cannot use ORG #*-1 to back up the object pointers as
is done in some assemblers. This must be done instead
by DS -1.

(set OBJect)
expression

Establishes the address at which the object code will be
placed during assembly. It defaults to MERLIN”s HIMEM.
There is rarely any need to use this pseudo-op and
inexperienced programmers are urged not to. An OBJ
above BASIC HIMEM (or the SYM address, if any) will
defeat generation of object code. This may be used when
sending a long listing to a printer or when using direct
assembly to disk (opcode DSK).

(PUT a text file in assembly)
filename

"PUT filename" (drive and slot parameters accepted in
standard DOS syntax) reads the named file with the "T."
prefix included unless the filename starts with a char-

acter less than "@" and "inserts” it at the location of
the opcode.

51

MERLIN Users Manual THE ASSEMBLER

VAR

VAR

52

NOTE: "Insert” refers to the effect on assembly of the
location of the source. The file itself is actually
placed just following the main source. Text files are
required by this facility in order to insure memory
protection. A memory error will occur if a PUT file
goes beyond HIMEM:. These files are in memory only one
at a time, so a very large program can be assembled
using the PUT facility.

There are two restrictions on a PUT file. First, there
cannot be MACRO definitions inside a file which is
PUT"ed; they must be in the main source. Second, a PUT
file may not call another PUT file with the PUT opcode.
0f course, linking can be simulated by having the "main
program” just contain the macro definitions and call, in
turn, all the others with the PUT opcode.

Any variables (such as]LABEL) may be used as "local”
variables. The usual local variables]1 through]8 may
be set up for this purpose using the VAR opcode.

The PUT facility provides a simple way to incorporate
much wused subroutines, such as MSGOUT or PRDEC, in a
program.

(setup VARiables)
€XPI ; €XPr; €XPr...

This is just a convenient way to equate the variables]1
-]8. "VAR 3;$42;LABEL" will set]J1 = 3,]2 = $42, and
]3 = LABEL. This is designed for use just prior to a
PUT. If a PUT file uses]1 -]8, except in PMC (or >>>)
lines for calling macros, there MUST be a previous
declaration of these.

MERLIN Users Manual THE ASSEMBLER

SAV

SAV

DSK

DSK

(SAVe object code)

filename

“"SAVE filename"” (drive and slot parameters accepted)
will save the current object code under the specified
name. This acts exactly as does the EXEC mode object
saving command, but it can be done several times during
assembly.

This pseudo-opcode provides a means of saving portions
of a program having more than one ORG. It also enables
the assembly of extremely large files. After a save,
the object address is reset to the last specification of
OBJ or to HIMEM: by default.

The SAVe command sets the address of the saved file to
its correct value. For example, if your program con-—
tains three SAV commands, then it will be saved in three
pieces. When BLOADed later, they will go to the correct
locations, the third following the second and that fol-
lowing the first.

Together, the PUT and SAV opcodes make it possible to
assemble extremely large«files.

(assemble directly to DiSK)
filename

"DSK filename" will direct the assembler to assemble the
following code directly to disk. If DSK is already in
effect, the old file will be closed and the new one
begun. This is useful primarily for extremely large
files. For moderately sized programs, SAV is preferred
since it is 30% faster and theoretically more reliable.

53

MERLIN Users Manual THE ASSEMBLER

END

END

DUM

DUM

DEND

DEND

54

(END of source file)

This rarely used or needed pseudo opcode instructs the
assembler to ignore the rest of the source. Labels
occurring after END will not be recognized.

(DUMmy section)
expression

This starts a section of code that will be examined for
value of labels but will produce no object code. The
expression must give the desired ORG of this section.
It 1is possible to re—ORG such a section using another
DUMMY opcode or using ORG. It is legal to use DS op-
codes in dummy sections but, since the address is not
printed for a DS opcode, it is preferable to use other
forms (DA, DFB, &c). Note that although no object code
is produced from a dummy section, the text output of the
assembler will appear as if code is being produced.

(Dummy END)

This ends a dummy section and re-establishes the ORG
address to the value it had upon entry to the dummy
section.

MERLIN Users Manual THE ASSEMBLER

Sample usage of DUM and DEND:

ORG $10¢0

I0BADRS $B7EB
DUM IOBADRS
IOBTYPE DFB 1
I0BSLOT DFB
IOBDRV DFB
I0BVOL DFB
1§ IOBTRCK DFB
11 IOBSECT DFB
12 DS
13 I0OBBUF DA
14 DA
15 IOBCMD DFB
16 IOBERR DFB
17 ACTVOL DFB
18 PREVSL DFB
19 PREVDR DFB
20 DEND

VoONOTUL WM -
<
o
=2

;pointer to DCT

SeEssHFaeasnvass -

22 START LDA #SLOT
23 STA IOBSLOT
24 * And so on

Formatting

LST ON/OFF (LiSTing control)
LST ON or OFF

This controls whether the assembly listing is to be sent
to the Apple screen (or other output device) or not.
You may, for example, use this to send only a portion of
the assembly listing to your printer. Any number of LST
instructions may be in the source. If the LST condition
is OFF at the end of assembly, the symbol table
will not be printed.

55

MERLIN Users Manual THE ASSEMBLER

The assembler actually only checks the third character
of the operand to see whether or not it is a space.
Therefore, LST ERINE will have the same effect as LST
OFF. The LST directive will have no effect on the
actual generation of object code. If the LST condition
is OFF, the object code will be generated much faster,
but this is recommended only for debugged programs.

NOTE: CONTROL-D from the keyboard toggles this flag
during the second pass.

EXP ON/OFF (macro EXPand control)

EXP

PAU

PAU

PAG

PAG

56

ON or OFF

EXP ON will print an entire macro during the assembly.
The OFF condition will print only the PMC pseudo-op.
EXP defaults to ON. This has no effect on the object
coded generated.

(PAUse)

On the second pass this causes assembly to pause until
a key is hit. This can also be done from the keyboard
by hitting the space bar.

(new PAGe)

This sends a formfeed ($8C) to the printer. It has no
effect on the screen listing even when using an 80—
column card.

MERLIN Users Manual THE ASSEMBLER

AST

AST

SKP

SKP

(send a line of ASTerisks)
expression

This sends a number of asterisks (*) to the listing
equal to the value of the operand. The number format is
the usual one, so that AST 1§ will send (decimal) 10
asterisks, for example. The number is treated modulo
256 with @ being 256 asterisks! This differs from TED
IT+, which recognizes the operand as a hex expression,
so any AST statements in a TED II+ source will need to
be converted.

(SKiP 1lines)

expression

This sends "expression" number of carriage returns to
the listing. The number format is the same as in AST.

TR ON/OFF (TRuncate control)

TR ON or OFF

TR ON 1limits object code printout to three bytes per
source line, even if the line generates more than three.
TR OFF resets it to print all object bytes.

Strings

The opcodes in this section also accept hex data after
the string. Any of the following syntaxes are
acceptable:

ASC "string"878D0@

ASC "string",878D@@
ASC “"string"”,87,8D,0@¢

57

MERLIN Users Manual THE ASSEMBLER

ASC

ASC

DCI

DCI

INV

INV

58

(define ASCii text)
dstring

This puts a delimited ASCII string into the object
code. The only restriction on the delimiter is that it
does not occur in the string itself. Different de-
limiters have different effects. Any delimiter less
than (in ASCII value) the single quote (°) will produce
a string with the high-bits on, otherwise the high-bits
will be off. For example, the delimiters !"#$Z& will
produce a string in "negative" ASCII, and the delimiters
“()+? will produce one in "positive" ASCII. Usually the
quote (") and single quote (°) are the delimiters of
choice, but other delimiters provide the means of in-
serting a string containing the quote or single quote as
part of the string.

(Dextral Character Inverted)
d-string
This 1is the same as ASC except that the string is put
into memory with the last character having the opposite
high bit to the others. All choices for delimiters
otherwise have the same effect as ASC.

(define INVerse text)
d-string
This puts a delimited string in memory in inverse format
(more specifically, with the 7th bit clear). All

choices of delimiter have the same effect on the 8th bit
as with ASC.

MERLIN Users Manual THE ASSEMBLER

FLS

FLS

REV

REV

Data

DA

(define FLaShing text)
d-string
This puts a delimited string in memory in flashing for-
mat (that is, with the 7th bit set). All choices of
delimiter have the same effect on the 8th bit as with
ASC.

(REVerse)
d-string
This puts the d-string in memory backwards. Example:

REV "DISK VOLUME"

gives EMULOV KSID (delimiter choice as in ASC). HEX
data may NOT be added after the string terminator.

and Allocation

(Define Address)

DA expression

This stores the two-byte value of the operand, usually
an address, in the object code, low-byte first. For
example:

DA $FDF§ gives (hex) F@ FD

DA also accepts multiple data separated by commas (such
as DA 1,10,10¢).

59

MERLIN Users Manual THE ASSEMBLER

DDB

DDB

DFB

DFB

60

(Define Double-Byte)
expression

As above with DA, but places high-byte first. DDB also
accepts multiple data (such as DDB 1,10,1¢@).

(DeFine Byte)
expression

This puts the byte specified by the operand into the
object code. It accepts several bytes of data, which
must be separated by commas and contain no spaces. The
standard number format is used and arithmetic is done as
usual.

The "#" symbol is acceptable but ignored, as is "<".
The ">" symbol may be used to specify the high— byte of
an expression, otherwise the low-byte is always taken.
The ">" symbol should appear as the first character only
of an expression or immediately after #. That is, the
instruction DFB >LAB1-LAB2 will produce the high-byte of
the value of LAB1-LAB2.

For example:
DFB $34,100,LAB1-LAB2,%1011,>LAB1-LAB2

is a properly formatted DFB statement which will gen-—
erate the object code (hex)

34 64 DE @B @9

assuming that LAB1=$81A2 and LAB2=$77C4.

MERLIN Users Manual THE ASSEMBLER

HEX (define HEX data)
HEX hex-data

This is an alternative to DFB which allows convenient
insertion of hex data. Unlike all other cases, the "$"
is not required or accepted here. The operand should
consist of hex numbers having two hex digits (for
example, use @F, not F). They may be separated by
commas or may be adjacent. An error message will be
generated if the operand contains an odd number of
digits or ends in a comma, or as in all cases, contains
more than 64 characters.

Examples of HEX:

HEX (@@@@FFFF
HEX 00,00,FF,FF
HEX 281A8F544EFFED

DS (Define Storage)
DS expression

This reserves space for string storage data. It zeros
out this space if the expression is positive. DS 14,
for example, will set aside 1§ bytes for storage.
Because DS adjusts the object code pointer, an instruc-
tion 1like DS -1 can be used to back up the object and
address pointers one byte.

KBD (define label from KeyBoarD)

label KBD
This allows a 1label to be equated from the keyboard
during assembly. Any expression may be inputted,
including expressions referencing previously defined

labels, however a BAD INPUT error will occur if the
input cannot be evaluated.

61

MERLIN Users Manual THE ASSEMBLER

LUP

LUP expression (Loop)
=—2 (end of LUP)

The LUP pseudo-opcode is used to repeat portions of
source between the LUP and the —--" “"expression” number
of times. An example of this is:

LUP 4
ASL

which will assemble as:

ASL
ASL
ASL
ASL

and will show that way in the assembly 1listing, with
repeated line numbers.

Perhaps the major use of this is for table building. As
an example:

1A = ¢
LUP $FF

1A =]A+1 (Note: will not work inside a Macro)
DFB]A

will assemble the table 1, 2, 3, ...,$FF.

The maximum LUP value is $8000 and the LUP opcode will simply
be ignored if you try to use more than this.

62

MERLIN Users Manual THE ASSEMBLER

CHK

CHK

ERR

ERR

(place CHecKsum in object code)

This places a checksum byte into object code at the
location of the CHK opcode. This is usually placed at
the end of the program and is used to verify the exist-
ence of an accurate image of the program in memory.

(force ERRor)
expression

"ERR expression” will force an error if the expression
has a non-zero value and the message "BREAK IN LINE ???"
will be printed.

This may be used to ensure your program does not exceed,
for example, $95FF by adding the final line:

ERR *-1/$960¢

NOTE: The above example would only alert you that the
program is too long, and will not prevent writing above
$960@ during assembly, but there can be no harm in this,
since the assembler will cease generating object code in
such an instance. The error occurs only on the second
pass of the assembly and does not abort the assembly.

Another available syntax is:
ERR ($300)-$4C
which will produce an error on the first pass and abort

assembly if location $30@ does not contain the value
$4C.

63

MERLIN Users Manual

USR

ER
THE ASSEMBLER

(USeR definable op-code)

USR optional expressions

64

This is a user definable pseudo-opcode. 1t does a JSR
$B6DA. This location will contain an RTS after 2 bo?t,
a BRUN MERLIN or BRUN BOOT ASM. To set up your routine
you should BRUN it from the EXEC command after CATALOQ.
This should just set up a JMP at $B6DA toO the main
routine and then RTS.

The following flags and entry points may be used by your
routine:

USRADS = $B6DA ;must have a JMP to your routine

PUTBYTE = $ESF6 ;see below

EVAL = SE5F9 ;see below

PASSNUM = $2 ;contains assembly pass number

ERRCNT = $1D ;error count

VALUE = $55 ;value returned by EVAL

OPNDLEN = $BB ;contains combined length of
;operand and comment

NOTFOUND = $FD ;see discussion of EVAL

WORKSP = 28¢ ;contains the operand and

;comment in positive ASCIL

Your routine will be called by the USR opcode with A=0,
y=¢ and carry set. To direct the assembler to put 2
byte in the object code, you should JSR PUTBYTE with the
byte in A.

PUTBYTE will preserve Y but will scramble A and X. Tt
returns with the zero flag clear (so that BNE always
branches). On the first pass PUTBYTE adjusts the object
and address pointers, SO that the contents of the regis—
ters are not important. You MUST call PUTBYIE the SAME
NUMBER OF TIMES on each pass OT the pointers will not be
kept correctly and the assembly of other parts of the
program will be incorrect!

MERLIN Users Manual THE ASSEMBLER

If your routine needs to evaluate the operand, or part
of it, you can do this by a JSR EVAL. The X register
must point to the first character of the portion of the
operand you wish to evaluate (set X=@ to evaluate the
expression at the start of the operand). On return from
EVAL, X will point to the character following the eval-
uated expression. The Y register will be), 1, or 2
depending on whether this character is a right paren-
thesis, a space, or a comma or end of operand.

Any character not allowed in an expression will cause
assembly to abort with a BAD OPERAND error. If some
label in the expression is not recognized then 1location
NOTFOUND will be non-zero. On the second pass, however,
you will get an UNKNOWN LABEL error and the rest of your
routine will be ignored. On return from EVAL, the
computed value of the expression will be in 1location
VALUE and VALUE+l, lowbyte first. On the first pass
this value will be insignificant if NOTFOUND is non-
zero.

Appropriate locations for your routine are $3@@-$3CF and
$8A@-S$8FF. You must not write to $9¢@. For a longer
routine, you may use high memory, just below $9853. If
you are sure that the symbol table will not exceed $10¢@
bytes, you could use the SYM EDITOR command to protect
your routine from overwrite by the object code. SYM
would have to be set at least one byte below your code.

You may use zero page locations $6@0-$6F, but should not
alter other locations. Also, you must not change any-
thing from $226 to $27F, or anything from $2C4 to $2FF.
Upon return from your routine (RTS), the USR line will
be printed (on the second pass).

65

MERLIN Users Manual THE ASSEMBLER

66

To gain further understanding of the use of USR, read
the source file SCRAMBLE.S or, for a more sophisticated
example, the file FLOAT.S. The first of these uses the
USR opcode to put an ASCII string into the object code
in a scrambled format. The second is a somewhat comp—
licated routine that uses Applesoft to compute the
packed (five-byte) form of a specified floating point
number, and put it in the object code. Here, the latter
can be used for assembly only on an Apple][Plus.

When you use the USR opcode in a source file, it is wise
to include some sort of check (in source) that the
required routine is in memory-. 1f, for example, your
routine contains an RTS at location $31¢ then:

ERR ($31@)-5$60

will test that byte and abort assembly if the RTS is not
there. Similarly, if you know that the required routine
should assemble exactly two bytes of data, then you can
(roughly) check for it with the following code:

LABEL USR OPERAND
ERR *-LABEL-2

This will force an error on the second pass if USR does
not produce exactly two object bytes.

It is possible to use USR for several different routines
in the same source. For example, your routine could
check the first operand expression for an index to the
desired routine and act accordingly. Thus "USR 1,
whatever” would branch to the first routine, "USR
2,stuff" to the second, etc.

MERLIN Users Manual THE ASSEMBLER

Conditionals

DO

(DO if true)

DO expression

This together with ELSE and FIN are the conditional
assembly PSEUDO-OPS. If the operand evaluates to ZERO,
then the assembler will stop generating object code
(until it sees another conditional). Except for macro
names, it will not recognize any labels in such an area
of code. If the operand evaluates to a non-zero number,
then assembly will proceed as usual. This is very
useful for MACROS.

It is also wuseful for sources designed to generate
slightly different code for different situations. For
example, if you are designing a program to go on a ROM
chip, you would want one version for the ROM and another
with small differences as a RAM version for debugging
purposes. Conditionals can be used to create these
different object codes without requiring two sources.

Similarly, in a program with text, you may wish to have
one version for Apples with lower case adapters and one
for those without. By wusing conditional assembly,
modification of such programs becomes much simpler,
since you do not have to make the modification in two
separate versions of the source code.

Every DO should be terminated somewhere later by a FIN
and each FIN should be preceded by a DO. An ELSE should
occur only inside such a DO/FIN structure. DO/FIN
structures may be nested up to eight deep (possibly with
some ELSE”s between). If the DO condition is off (value
@), then assembly will not resume until its corres-
ponding FIN is encountered, or an ELSE at this 1level
occurs. Nested DO/FIN structures are valuable for
putting conditionals in MACROS.

67

MERLIN Users Manual

ELSE

THE ASSEMBLER

(ELSE do this)

ELSE

IF

This inverts the assembly condition (ON becomes OFF and
OFF becomes ON) for the last DO.

(IF so then do)

IF char,]var (IF char is the first character of]var)

FIN

FIN

68

This checks to see if char is the leading character of
the replacement string for]Jvar. Position is important:
the assembler checks the first and third characters of
the operand for a match. 1f a match is found then the
following code will be assembled. As with DO, this must
be terminated with a FIN, with optional ELSEs between.
The comma is not examined, so any character may be used
there. For example:

IF "=]1

could be used to test if the first character of the
variable]1 is a double quote (") or not, perhaps needed
in a macro which could be given either an ASCII or a hex
parameter.

(FINish conditional)

This cancels the last DO or IF and continues assembly
with the next highest level of conditional assembly, oOT
ON if the FIN concluded the last (outer) DO or IF.

MERLIN Users Manual THE ASSEMBLER

Example of the use of conditional assembly:

MOV MAC
LDA]1
STA]2
<L
MOVD MAC
MOV]1;]2
LESEN(1 ;Syntax MOVD (ADR1),Y;?2??
INY
TE RS2 ; MOVD (ADR1),Y;(ADR2),Y
MOV]1;]2
ELSE ;5 MOVD (ADR1),Y;ADR2
MOV]1;]2+1
FIN
ELSE
IF (,]2 ;Syntax MOVD ?2??;(ADR2),Y
INY
IF #,]1 ;5 MOVD #ADR1;(ADR2),Y
MOV]1/$100;]
ELSE ;5 MOVD ADR1;(ADR2),Y
MOV]1+1;]2
FIN
ELSE ;Syntax MOVD ????;ADR2
IF #,]1 ; MOVD #ADR1;ADR2
MOV]1/$100;]2+1
ELSE ;5 MOVD ADR1;ADR2
MOV]J1+1;]2+1
FIN sMUST close ALL
FIN sconditionals, Count DOs
FIN ;& IFs, deduct FINs. Must
LKL ;yield zero at end.

* Call syntaxes supported by MOVD:

MOVD ADRI ; ADR2

MOVD (ADR1),Y;ADR2
MOVD ADR1;(ADR2),Y
MOVD (ADR1),Y;(ADR2),Y
MOVD #ADR1;ADR2

MOVD #ADR1;(ADR2),Y

69

MERLIN Users Manual

THE ASSEMBLER

Macros

MAC

(begin MACro definition)

Label MAC

EOM

EOM
KL

PMC

PMC
>>>

70

This signals the start of a MACRO definition. It must
be labeled with the macro name. The name you use is
then reserved and cannot be referenced by things other
than the PMC pseudo-op (things like DA NAME will not be
accepted if NAME is the label on MAC). However, the
same thing can be simulated by preceding the MACRO with
LABEL EQU *, or LABEL DS @, &c. See the section on
MACROS for details of the usage of macros.

(XL

(alternate syntax)

This signals the end of the definition of a MACRO. It
may be labeled and used for branches to the end of a
macro, or one of its copies.

o>)

macro-name
macro-name (alternate syntax)

This instructs the assembler to assemble a COPY of
the named macro at the present location. See the
section on MACROS. It may be labeled.

MERLIN Users Manual THE ASSEMBLER

Variables

Labels beginning with "]" are regarded as VARIABLES.
They can be redefined as often as you wish. The de-
signed purpose of variables is for use in MACROS, but
they are not confined to that use.

Forward reference to a variable is impossible (with
correct results) but the assembler will assign some
value to it. That is, a variable should be defined
before it is used.

It is possible to use variables for backwards branching,
using the same label at numerous places in the source.
This simplifies label naming for large programs and uses
much less space than the equivalent once-used labels.
For example:

1 LDY #¢
2]JLOOP LDA TABLE,Y
3 BEQ NOGOOD
4 JSR DOIT
5 INY
6 BNE]JLOOP ;BRANCH TO LINE 2
7 NOGOOD LDX #-1
]JLOOP INX
STA DATA,X
19 LDA TBL2,X
11 BNE]JLOOP ;BRANCH TO LINE 8

ole.}

71

MERLIN Users Manual MACROS

MACROS

Defining a Macro
A macro definition begins with the line:
Name MAC (no operand)

with Name in the label field. Its definition is terminated
by the pseudo—op EOM or <<XK. The label you use as Name
cannot be referenced by anything other than PMC NAME (or >>>
NAME) .

You can define the macro the first time you wish to use it in
the program. However, it is preferable (and required if the
macro uses variables) to first define all macros at the start
of the program with the assembly condition off (DO @) and
then refer to them when needed.

Forward reference to a macro definition is not possible, and
would result in a NOT MACRO error message. That is, the
macro must be defined before it is called by PMC (or >>>).

The conditionals DO, ELSE and FIN may be used within a macro.

Labels inside macros are updated each time PMC (or >>>) is
encountered.

Error messages generated by errors in macros usually abort
assembly, because of possibly harmful effects. Such messages
will usually indicate the line number of the invocation (with
PMC or >>>) rather than the line inside the macro where the
error occured.

Nested Macros
Macros may be nested to a depth of 15. For nesting, macros
MUST be defined with the DO condition off. That is, nested

macros may NOT be defined the first time they are used (as
described above).

73

MERLIN Users Manual MACROS

Here is an example of a nested macro in which the definition

itself is nested. (This can only be done when both defini-
tions end at the same place.)

Do @
TRDB MAC
>>> TR.]1+1;]12+1
TR MAC
LDA]1
STA]2
<L
FIN

In this example >>> TR.LOC;DEST will assemble as:

LDA LOC
STA DEST

and >>> TRDB.LOC;DEST will assemble as:

LDA LOC+1
STA DEST+1
LDA LOC
STA DEST

A more common form of nesting is illustrated by these two
macro definitions:

CH EQU $24

po ¢
POKE MAC
LDA #]2
STA]1
<L
HTAB MAC
>>> POKE.CH;]1
<L
FIN

74

MERLIN Users Manual MACROS

MACRO names may also be put in the opcode column, without

using the PMC or >>>, with the following restriction:

The first three characters of a name must not coincide
with any regular opcode. It is acceptable if two MACRO

names have the same first three characters.

Exception: The fourth character of an opcode or MACRO

name wmodifies the recognition of the name if it is

a

“D”. Thus a MACRO named INCD will not conflict with the

opcode INC.

Note that the PMC or >>> syntax is still available and is not

subject to this restriction.

MERLIN with the 65C02 modifications installed does NOT accept

this alternate syntax for invocation.

Special Variables

Eight variables, named]1 through]8, are predefined and are
designed for convenience in MACROS. These are used in a PMC

(or >>>) statement. The instruction:
>>> NAME.exprl;expr2;expr3...

will assign the value of exprl to the variable]1, that
expr2 to]2, and so on.

of

75

MERLIN Users Manual MACROS

An example of this usage is:

TEMP EQU s1¢
DO)
SWAP MAC
LDA 11
STA 13
LDA 12
STA 1
LDA 13
STA 12
<KL
FIN
>>> SWAP.$6;$7; TEMP
> SWAP.$1000;$6; TEMP

This program segment swaps the contents of location $6 with
that of $7, wusing TEMP as a scratch depository, then swaps
the contents of $6 with that of $1000.

I1f, as above, some of the special variables are used in the
MACRO definition, then values for them must be specified in
the PMC (or >>>) statement. In the assembly listing, the
special variables will be replaced by their corresponding
expressions.

The number of values must match the number of variables used
in the macro definition. A BAD OPERAND error will be gener—
ated if the number of values is less than the number of
variables used. No error message will be generated, however,
if there are more values than variables.

The assembler will accept some other characters in place of
the period (as per examples) or space between the macro name
and the expressions in a PMC statement. You may use any of
these characters:

° / s = (

The semicolons are required, however, between the expressions
and no extra spaces are allowed.

76

MERLIN Users Manual MACROS

Macros will accept literal data. Thus the assembler will
accept the following type of macro call:

DO @
MUV MAC
LDA]1
STA]2
<K
FIN

>>> MUV.(PNTR),Y;DEST
>>> MUV.#3;FLAG,X

It will also accept:

D0 ¢
PRINT MAC
" JSR SENDMSG
ASC]1
BRK
<KL
FIN
>>> PRINT.!"quote"!
>>> PRINT.”This is an example”
>>> PRINT."So”s this, understand?"

LIMITATION: If such strings contain spaces or semicolons,
they MUST be delimited by quotes (single or double). Also,
literals such as >>> WHAT."A" must have the final delimiter.
(This is only true in macro calls or VAR statements, but it
is good practice in all cases.)

A previous version of MERLIN did not have this capability and
used commas rather than semicolons in PMC statements. If you
had that previous version, a program called "CONVERT" has
been provided which changes these commas to semicolons in a
matter of seconds. With the source file in memory, it should
be BRUN from the EXEC mode”s "COMMAND:" after Catalog.

77

MERLIN Users Manual MACROS

Sample Program

Here is a sample program intended to illustrate the usage of
mécros with non-standard variables. It would, however be
s1?pler and more pleasing if it used]1 instead of]MSG, (in
which case the variable equates should be eliminated and the
values for)1 specified in the >>> lines.)

HOME EQU $FC58
CouT EQU SFDED
DOS EQU $3D9
DO 1) ;Assembly off
SENDMSG MAC ;Start of definition of the
;macro "SENDMSG"
LDY @
LOOP LDA JMSG, Y ;Get a character
BEQ ouT ;End of message
JSR COUT ;Send it
INY
BNE LOOP ;Back for more
ouT <L ;End of macro definition and
;exit from routine
FIN ;Turn assembly ON
JSR HOME ;Clear screen
JMSG EQU LOOP ;Print msgs..-
>>> SENDMSG
1MSG EQU IMSG
> SENDMSG
1MSG EQU NMSG
>>> SENDMSG
JMP DOS ;All done, exit gracefully
FMSG FLS ~THIS IS A FLASHING MESSAGE"
HEX 8D8DJY
IMSG INV ~THIS IS A MESSAGE IN INVERSE"
HEX 8D8D@P
NMSG ASC »THIS IS A NORMAL MESSAGE"
HEX 8D8D@EY

78

MERLIN Users Manual MACROS

The Macro Library

A macro library with three example macro programs is included
in source file form on the MERLIN diskette. The purpose of
the library 1is to provide some guidance to the newcomer to
macros and how they can be used within an assembly program.

NOTE ON LIBRARY: All macros are defined at the beginning of
the source file, then each example program places the macros
where they are needed. Conditionals are used to determine
which example program is to be assembled. The KBD opcode
allows the user to make this selection from the keyboard
during assembly.

79

MERLIN Users Manual TECHNICAL INFORMATION

TECHNICAL INFORMATION

The source is placed at START OF SOURCE when loaded, regard-
less of its original address.

The important pointers are:

START OF SOURCE in $A,$B (set to $901 unless changed
by CHRGEN7@ or other)

HIMEM: in $C,$D (defaults to $80@@)

END OF SOURCE in E,SF

When you exit to BASIC or to the monitor, these pointers are
saved on the RAM card at $E@PA-SE@PF. They are restored upon
re—entry to MERLIN.

Entry into MERLIN replaces the current I/0 hooks with the
standard ones and reconnects DOS. This is the same as typing
PR#@ and IN#@ from the keyboard. Entry to the EDITOR discon-—
nects DOS, so that you can use labels such as INIT without
disastrous consequences. Re-entry to EXEC MODE disconnects
any I/0 hooks that you may have established via the editor”s
PR# command, and reconnects DOS. Exit from assembly (com—
pletion of assembly or CTRL-C) also disconnects I/0 hooks.

General Information

Re-entry after exit to BASIC is made by the "ASSEM" command.
Simply use "ASSEM" wherever a DOS command is valid (for
example, at the BASIC prompt). A BRUN MERLIN or a disk boot
will also provide a warm re-entry and will not reload MERLIN
if it is already there. A reload may be forced by typing
BRUN BOOT ASM which would then be a cold entry, "destroying"
any file in memory.

81

MERLIN Users Manual TECHNICAL INFORMATION

Memory organization for ordinary sized files is of no concern
to the user, but it is important to understand certain
constraints for the handling of large files. MERLIN"s HIMEM:
(which defaults to $8@@@) is an upper limit to the source
file. It is also an upper limit for PUT files. If a memory
error occurs during assembly indicating a PUT line, it means
the PUT file was too large to be placed in memory along with
the PUT”ing file and indicates that HIMEM: will have to be
increased.

The default ORG and OBJ addresses equal the present value of
MERLIN“s HIMEM:. It is illegal to specify an OBJ address
that is less than HIMEM except that a page 3 address is
allowed. If a page 3 ($3P@-$3FF) OBJ address is used, the
user MUST be careful that the file will not write over the
DOS jumps at $3D@-$3FF as the assembler does NOT check for
this error.

If during assembly the object code exceeds BASIC HIMEM (or
the SYM address, if one has been specified) then the code
will not be written to memory, but assembly will appear to
proceed as normal and its output sent to the screen or
printer. The only clue that this has happened, if not
intentional, is that the OBJECT CODE SAVE command at EXEC
level is disabled in this event. Therefore, if a listing for
a very long file is desired, without actually creating code,
the user can assemble over DOS and up (OBJ $AG@P will do).

82

MERLIN Users Manual

SFFFF

SD000

$SD000

SCFFF

SC000
SBFFF

APPLESOFT HIMEM: (§73.74) —=$9853
$9852

SYM =

MERLIN HIMEM: (SC.D) =3~ 58000
END OF SOURCE (SE.F) =

BEG. OF SOURCE (SAB)=3= $901

SBFF
$8A0

$800

STFF
$400
$3D0
$300
$200

$100

$O

TECHNICAL INFORMATION

MERLIN MEMORY MAP
(RAM CARD VERSION)

NORMAL SYMBOL TABLE
o (D Bank 1)

APPLE I/0
“SOFT SWITCHES”

(2 Buffers)

(Excess Symbol Table
From Ram Card) 1_

SOURCE FILE

FREE SPACE

MISC. USE
BY MERLIN

SCREEN MEMORY

PAGE 2
(Input Buffer)

PAGE 1
(Stack)

PAGE 0
(Misc. Pointers)

53248

53248

53247

49152
49151

38995

38994

32768

~<— ALSO CAN BE FOUND WITH “W0"
COMMAND FROM EDIT MODE

2305
2303
2228
2048
2047
1024

976
768

256
<& (S60.6F UNUSED)
0

83

MERLIN Users Manual

$9D00

S73F8

APPLESOFT HIMEM: (573.74) = S6F53

$6000

MERLIN HIMEM: (SC.D)==>-$5000

END OF SOURCE (SEF) ==~

BEG. OF SOURCE (SAB)=s=$901

S8FF
S8A0

$800

STFF

$400
$3D0

$200
$100

S0

84

TECHNICAL INFORMATION

MERLIN MEMORY MAP

(48K Version)
49151
DOS
40192
MERLIN
29688
DOS BUFFERS
(€3]
28499
SYMBOL TABLE f
24576
OBJECT CODE T
] 20480

<€= ALSO CAN BE FOUND WITH “W0"

(Misc. Pointers)

COMMAND FROM EDIT MODE
SOURCE FILE
2305
2303
FREE SPACE
2228
MISC. USE
BY MERLIN o
2047
SCREEN MEMORY
PAGE =
] _DOS/MON VECIORS____| o7¢
PAGE
M USER SPACE 768
PAGE 2
(Input Buffer)
l 510
PAGE 1
Stack
() o5
PAGE 0 | < (S60.6F UNUSED)

(0]

MERLIN Users Manual TECHNICAL INFORMATION

Symbol Table

The symbol table is printed after assembly unless LST OFF has
been invoked. It is displayed first sorted alphabetically
and then sorted numerically. The symbol table can be aborted
at any time by pressing CTRL-C. Stopping it in this manner
will have no ill effect on the object code which was gener-
ated. The symbol table is flagged as follows:

Macro Definition

Label defined within a Macro

Variable (symbols starting with “]")

A symbol that was defined but never referenced

-)<Z§
non

Internally, these are flagged by setting bits 7 to 4 of the
symbol”s length byte:

bit 5

bit 4

indicated by "]" preceding label name
bit 7

-\’<Z§

Also, bit 6 is set during the alphabetical printout to flag
printed symbols, then removed during the numerical order
printout. The symbol printout is formatted for an 8¢ column
printer, or for one which will send a carriage return after
40 columns.

Using MERLIN With Shift Key Mods

MERLIN supports all hardware shift key modifications. The
CONFIGURATION program will establish the modification that
you want supported. MERLIN is smart enough to know if the
modification actually exists in the Apple you are using and
defeats the modification if it is not there. Thus it can be
used on another machine without reconfiguration.

85

MERLIN Users Manual TECHNICAL INFORMATION

Using MERLIN With 8@ Column Boards

Most, but not all, 8@ column boards are supported. You may
use the VIDEO command to enable the 8@ column board. To have
the board selected upon boot, use the CONFIGURATION program.
The Editor”s VIDEO @ or $10 command followed by RESET will
switch back to the normal Apple screen.

If your board does not support inverse video, then control
characters in the source will show up as ordinary capital
letters instead of inverse letters as with boards that sup-
port inverse. You can use the editor”s FIND command to
search for particular control characters, verify their
presence or absence, or simply switch over to the mnormal
Apple screen.

If your copy of MERLIN has been configured to support an 80
column card in slot 3, and there is no card in that slot,
MERLIN will recognize this and defeat the 8¢ column pro-
vision. There is no need to reconfigure for use on another
computer.

MERLIN will NOT support any board that does not recognize the
"POKE 36" method of tabbing. As far as we know this only
means it will not support older versions of the FULL VIEW 8¢
card.

When in EDIT mode, MERLIN takes total control of input and
output. The effect of typing a control character will be as
described in this manual and NOT as described in the manual
for your 80 column card. For example, CTRL-L will not blank
the screen, but is the case toggle. CTRL-A, which acts as a
case toggle on many 8§ column cards, will not do this in EDIT
mode and simply produces a CTRL-A in the file line.

86

MERLIN Users Manual TECHNICAL INFORMATION

The CONFIGURE ASM Program

This program allows you to make several minor modifications
to MERLIN"s default conditions. It allows you to change the
"UPDATE SOURCE" character searched for at the entry to the
assembler, the editor”s wild card character, and the number
of symbol fields printed per line in the symbol table print-
out. It also allows you to specify whether you want to have
an 8§ column board supported, and if so, which slot it is in.

You can also specify a hardware shift key modification. Any
such modification can be supported. However, if your modifi-
cation 1is the type that enables direct input of lower case
(as with the VIDEX Keyboard Enhancer) instead of providing a
memory location to be tested (as with the "game button 2"
modification), then the default at the start of each line
will be 1lower case rather than upper case and CTRL-L will
function as a case lock toggle.

CONFIGURE ASM allows you to specify whether you have a lower
case adapter. This will affect the condition on boot if you
have not elected to have an 8§ column board selected. It may
always be defeated from the editor using the VIDEO command,
so this only selects the initial condition.

You may select a number of other options including certain
printer options for use by the PRTR command.

Finally, you can save the configured version to another, or
the same disk. There is no reason to keep the original
version since you can always return to it by reconfiguration.

CONFIGURE ASM can be used to set up the VIDEX ULTRATERM entry
defaults. When in the Editor the ULTRATERM mode can be
altered by the ESCAPE sequences given in the ULTRATERM
manual.

87

MERLIN Users Manual TECHNICAL INFORMATION

Thus, the following commands give the indicated effects:

ESC @ ecoceeees 4@ x 24 (same effect as VID $1¢ or 16)
ESC 1 ¢ecoeeees 80 x 24 standard character set

ESC 2 coeenenss 96 % 24

ESC 3 cecceeeseslb6l x 24

ESC 4 ¢cccceee. 80 x 24 high quality character set
ESC 5 ceeseeoes 80 x 32

ESC 6 cceceeoss 80 x 48

ESC 7 ceeeeeesel32 x 24

ESCr8Ns iieiscnaesl 28 X832

Note that control V or W commands cannot be issued from the
Editor. They can, however, be issued from the Monitor.

If you do net have a lower case adapter then after exiting
the ULTRATERM with the ESC ¢ command you should use the VID @
command .

Exit to EXEC mode will return to the default state as set up
in the CONFIGURE ASM program and the same is true of a VID 3
command .

Except for the normal 24 x 8) format, support for the
ULTRATERM depends on the card being in slot 3.

There may be problems if you try to send things to the print-—
er while in some of the ULTRATERM modes. It is recommended
that you switch to 4@ columns before doing this. "CONTROL-I
8¢N" in the PRTR command sometimes overcomes the problem.

88

MERLIN Users Manual TECHNICAL INFORMATION

Error Messages

BAD OPCODE

Occurs when the opcode is not valid (perhaps misspelled)
or the opcode is in the label column.

BAD ADDRESS MODE

The addressing mode is not a valid 65@¢2 instruction; for
example, JSR (LABEL) or LDX (LABEL),Y.

BAD BRANCH

A branch (BEQ, BCC, &c) to an address that is out of
range, i.e. further away than +127 bytes.

NOTE: Most errors will throw off the assembler”s
address calculations. Bad branch errors should be
ignored until previous errors have been dealt with.

BAD OPERAND

This occurs if the operand is illegally formed or if a
label in the operand is not defined. This also occurs
if you "EQU" a label to a zero page value after the
label has been used. It may also mean that your operand
is 1longer than 64 characters, or that a comment 1line
exceeds 64 characters. This error will abort assembly.

89

MERLIN Users Manual TECHNICAL INFORMATION

DUPLICATE SYMBOL

On the first pass, the assembler finds two identical
labels.

MEMORY FULL

This is wusually caused by one of four conditions:
Incorrect OBJ setting, source code too large, object
code too large or symbol table too large. See "Special
Note" at the end of this section.

UNKNOWN LABEL

Your program refers to a label that has not been
defined. This also occurs if you try to reference a
MACRO definition by anything other than PMC or >>>. It
can also occur if the referenced label is in an area
with conditional assembly OFF. The latter will not
happen with a MACRO definition.

NOT MACRO

Forward reference to a MACRO, or reference by PMC or >>>
to a label that is not a MACRO.

NESTING ERROR

Macros nested more than 15 deep or conditionals nested
more than 8 deep will generate this error.

BAD "PUT"

90

This is caused by a PUT inside a macro or by a PUT
inside another PUT file.

MERLIN Users Manual TECHNICAL INFORMATION

BAD "SAV"

This is caused by a SAV inside a macro or a SAV after a
multiple OBJ after the last SAV.

BAD INPUT

This results from either no input ([RETURN] alone) or an
input exceeding 37 characters in answer to the KBD op—-
code”s request for the value of a label.

BREAK

This message is caused by the ERR opcode when the ex-
pression in the operand is found to be non-zero.

BAD LABEL

This is caused by an unlabeled EQU or MAC, a label that
is too long (greater than 13 characters) or one
containing illegal characters (a label must begin with a
character at least as large in ASCII value as the colon
and may not contain any characters less than the digit
zero).

Special Note - MEMORY FULL Errors

There are four common causes for the MEMORY FULL error mes—
sage. A more detailed description of this problem and some
ways to overcome it follow.

MEMORY FULL IN LINE: xx. Generated during pass 1 of assembly
(line number points to an OBJ instruction). CAUSE: An OBJ
was specified that was below MERLIN”s HIMEM: (normally $80@@)
and also not within Page 3. MERLIN will not allow you to put
object code out of this range in order to protect your source
file and the system. REMEDY: Remove the OBJ instruction or
change it to specify an address within the legal range.

91

MERLIN Users Manual TECHNICAL INFORMATION

MEMORY FULL IN LINE: xx. Generated during assembly. CAUSE:
Too many symbols have been placed into the symbol table,
causing it to exceed Applesoft”s HIMEM (normally $9853 for
the RAM card version and $6F53 for the 48K version). REMEDY:
Make the symbol table larger by using the SYM command to
lower its beginning address.

ERR: MEMORY FULL. Generated immediately after you type in
one line too many. CAUSE: The source code is too large and
has exceeded MERLIN"s HIMEM (normally $8(@@ on the RAM card
version; $50@@ on the 48K version). REMEDY: Raise MERLIN s
HIMEM: (see the section on the HImem: command) or break the
source file up into smaller sections and bring them in when
necessary by using the "PUT" pseudo-op.

ERROR MESSAGE: None, but no object code will be generated
(there will be no OBJECT information displayed on the EXEC
menu) . CAUSE: Object code generated from an assembly would
have exceeded the symbol table or Applesoft”s HIMEM. Also
can be caused by PUT file being too large. REMEDY: Lower
MERLIN"s HIMEM or write the object code directly to disk,
using the DSK pseudo-op.

When an error occurs on the first pass and while the
assembler is processing a PUT file, the error message will
indicate the line number preceded by ">" in the PUT file. To
find which 1line of the main program was active (in effect
telling you which PUT file the error occurred in) simply type
"/"<RETURN> and quickly stop the listing. The first 1line
listed will be the active line.

92

MERLIN Users Manual SOURCEROR

SOURCEROR

Introduction

SOURCEROR is a sophisticated and easy to use disassembler
designed as a subsidiary to create MERLIN source files out of
binary programs, usually in a matter of minutes. SOURCEROR
disassembles SWEET 16 code as well as 65@2 code.

The main part of SOURCEROR is called SRCRR.0BJ, but this
cannot be run (conveniently) directly, since it may overwrite
DOS buffers and crash the system. For this reason, a small
program named SOURCEROR is provided. It runs in the input
buffer, and does not conflict with any program in memory.
This small program simply checks memory size, gets rid of any
program such as PLE which would conflict with the main
SOURCEROR program, sets MAXFILES 1, then runs SRCRR.OBJ (at
$8803-3$9AA5).

To minimize the possibility of accident, SRCRR.OBJ has a
default location of $4@@@ and if you BRUN it, it will just
return without doing anything. If you try to BRUN it at its
designed location of $8804d, however, you could be in for big
trouble. SOURCEROR assumes the standard Apple screen is
being used and will not function with an 80 column card.

Using SOURCEROR

1. Load in the program to be disassembled. Although
Sourceror will handle programs at any location, the
original location for the program is preferable as long
as it will not conflict with SOURCEROR and the build up
of the source file. When in doubt, load it in at $8¢¢ or
$8#3. Small programs at $6@P@ and above, or medium
sized omnes above $400@ will probably be okay at their
original locations.

2. BRUN SOURCEROR

93

MERLIN Users Manual SOURCEROR

94

You will be told that the default address for the source
file is $25¢00@. This was selected because it does not
conflict with the addresses of most binary programs you
may wish to disassemble. Just hit RETURN to accept this
default address. Otherwise, specify (in hex) the ad-
dress you want.

You may also access a "secret” provision at this point.
This is done by typing CTRL-S (for "SWEET") after, or in
lieu of the source address. Then you will be asked to
specify a (nonstandard) address for the SWEET 16 inter—
preter. This is intended to facilitate disassembly of
programs which use a RAM version of SWEET 16.

Next, you will be asked to hit RETURN if the program to
be disassembled is at its original (running) location,
or you must specify in hex the present location of the
code to be disassembled. Finally, you will be asked to
give the ORIGINAL location of that program.

NOTE: When disassembling, you MUST use the ORIGINAL
address of the program, not the address where the pro-
gram current-ly resides. It will appear that you are
disassembling the program at its original location, but
actually, SOURCEROR is disassembling the code at its
present location and translating the addresses.

Lastly, the title page which contains a synopsis of the
commands to be used in disassembly will be displayed.
You may now start disassembling or use any of the other
commands . Your first command must include a hex ad-
dress. Thereafter this is optional, as we shall
explain.

At this point, and until the final processing, you may
hit RESET to return to the start of the SOURCEROR pro-
gram. If you hit RESET once more, you will exit
SOURCEROR and return to BASIC. Using RESET assumes you
are using the Autostart monitor ROM.

MERLIN Users Manual SOURCEROR

Commands Used in Disassembly

The disassembly commands are very similar to those used by
the disassembler in the Apple monitor. All commands accept a
4-digit hex address before the command letter. If this
number is omitted, then the disassembly continues from its
present address. A number must be specified only upon
initial entry.

If you specify a number greater than the present address, a
new ORG will be created.

More commonly, you will specify an address less than the
present default value. 1In this case, the disassembler checks
to see if this address equals the address of one of the
previous lines. If so, it simply backs up to that point. If
not, then it backs up to the next used address and creates a
new ORG. Subsequent source lines are "erased". It is gen-
erally best to avoid new ORGs when possible. If you get a
new ORG and don”t want it, try backing up a bit more until
you no longer get a new ORG upon disassembly.

Command Descriptions

L (List)

This is the main disassembly command. It disassembles 20
lines of code. It may be repeated (e.g. 20@@LLL will
disassemble 6@ lines of code starting at $2000). If a
JSR to the SWEET 16 interpreter is found, disassembly is
automatically switched to the SWEET 16 mode.

Command L always continues the present mode of disassem-
bly (SWEET 16 or normal).

If an illegal opcode is encountered, the bell will sound
and opcode will be printed as three question marks in
flashing format. This is only to call your attention to
the situation. In the source code itself, unrecognized
opcodes are converted to HEX data, but not displayed on
the screen.

95

MERLIN Users Manual SOURCEROR

S (SWEET)

This is similar to L, but forces the disassembly to start
in SWEET 16 mode. SWEET 16 mode returns to normal 65@2
mode whenever the SWEET 16 RTN opcode is found.

N (Normal)

This is the same as L, but forces disassembly to start in
normal 65@2 mode.

H (Hex)

This creates the HEX data opcode. It defaults to one
byte of data. If you insert a one byte (one- or two-

digit) hex number after the H, that number of data bytes
will be generated.

T (Text)

This attempts to disassemble the data at the current
address as an ASCII string. Depending on the form of the
data, this will (automatically) be disassembled under the
pseudo-opcode ASC, DCI, 1INV or FLS. The appropriate
delimiter " or “ is automatically chosen. The disassem-
bly will end when the data encountered is inappropriate,
when 62 characters have been treated, or when the high
bit of the data changes. In the last condition, the ASC
opcode is automatically changed to DCI.

Sometimes the change to DCI is inappropriate. This

change can be defeated by using TT instead of T in the
command .

96

MERLIN Users Manual SOURCEROR

Occasionally, the disassembled string may not stop at the
appropriate place because the following code looks 1like
ASCII data to SOURCEROR. In this event, you may 1limit
the number of characters put into the string by inserting
a one or two digit hex number after the T command.

This, or TT, may also have to be used to establish the
correct boundary between a regular ASCII string and a
flashing one. It is usually obvious where this should be

done.

Any 1lower case letters appearing in the text string are
shown as flashing uppercase letters.

W (Word)

This disassembles the next two bytes at the current
location as a DA opcode. Optionally, if the command WW
is wused, these bytes are disassembled as a DDB opcode.

If W- is used as the command, the two bytes are disassem—
bled in the form DA LABEL-1. The latter is often the
appropriate form when the program uses the address by
pushing it on the stack. You may detect this while
disassembling, or after the program has been disassem-
bled. In the latter case, it may be to your advantage to
do the disassembly again with some notes in hand.

Housekeeping Commands

/ (Cancel)

This essentially cancels the last command. More exactly,
it re-establishes the last default address (the address
used for a command not necessarily attached to an
address). This is a useful convenience which allows you
to ignore the typing of an address when a backup is
desired.

97

MERLIN Users Manual

SOURCEROR

As an example, suppose you type T to disassemble some
text. You may not know what to expect following t@e
text, so you can just type to L to look at it. Then if
the text turns out to be followed by some Hex data (such
as $8D for a carriage return), simply type / to cancel
the L and type the appropriate H command.

R (Read)

This allows you to look at memory in a format that makes
imbedded text stand out. To look at the data from $1@¢g@
to $10FF type 10@@R. After that, R alone will bring up
the next page of memory. The numbers you use for this
command are totally independent of the disassembly
address.

However, you may disassemble, then use (address)R, then L
alone, and the disassembly will proceed just as if you
never used R at all. If you don”t intend to use the
default address when you return to disassembly, it may be
wise to make a note on where you wanted to resume, or to
use the / before the R.

Q (Quit)

98

This ends disassembly and goes to the final processing
which is automatic. If you type an address before the Q,
the address pointer is backed to (but not including) that
point before the processing. If, at the end of the
disassembly, the disassembled lines include:

2341- 4C @3 Eg JMP $E@@3
2344- A9 BE 94 LDA $94BE,Y

and the last line is just garbage, type 2344Q. This will
cancel the last line, but retain all the previous.

MERLIN Users Manual SOURCEROR

Final Processing

After the Q command, the program does some last minute pro-
cessing of the assembled code. If you hit RESET at this
time, you will return to BASIC and lose the disassembled

code.

The processing may take from a second or two for a short
program, to two or three minutes for a long one. Be patient.

When the processing is done, you are asked if you want to
save the source. If so, you will be asked for a file name.
SOURCEROR will append the suffix ".S" to this name and save
it to disk.

The drive used will be the one used to BRUN SOURCEROR. Re-
place the disk first if you want the source to go on another
disk.

To 1look at the disassembled source, BRUN MERLIN, or type
ASSEM, and load it in.

Dealing with the Finished Source

In most cases, after you have some experience and assuming
you used reasonable care, the source will have few, if any,
defects.

You may notice that some DA”s would have been more appro-
priate in the DA LABEL-1 or the DDB LABEL formats. In this,
and similar cases, it may be best to do the disassembly again
with some notes in hand. The disassembly is so quick and
painless, that it is often much easier than trying to alter
the source appropriately.

The source will have all the exterior or otherwise un-
recognized 1labels at the end in a table of equates. You
should look at this table closely. It should not contain any
zero page equates except ones resulting from DA"s, JMP”s or
JSR”s. This is almost a sure sign of an error in the disas-
sembly (yours, not SOURCEROR"s) . It may have resulted from
an attempt to disassemble a data area as regular code.

99

MERLIN Users Manual SOURCEROR

NOTE: If you try to assemble the source under these con-
ditions, you will get an error as soon as the equates appear.
If, as eventually you should, you move the equates to the
start of the program, you will not get an error, but the
assembly MAY NOT BE CORRECT.

It is important to deal with this situation first as trouble
could occur if, for example, the disassembler finds the data
AD 0@ 8D. It will disassemble it correctly, as LDA $@@8D.
The assembler always assembles this code as a zero page
instruction, giving the two bytes A5 8D. Occasionally you
will find a program that uses this form for a zero page
instruction. In that case, you will have to insert a char-
acter after the LDA opcode to have it assemble identically to
its original form. Often it was data in the first place
rather than code, and must be dealt with to get a correct
assembly.

The Memory Full Message

When the source file reaches within $6@¢ of the start of
SOURCEROR (that is, when it goes beyond $82@@) you will see
MEMORY FULL and "HIT A KEY" in flashing characters. When you
hit a key, SOURCEROR will go directly to the final pro-
cessing. The reason for the $6@@ gap is that SOURCEROR needs
a certain amount of space for this processing. It is pos-
sible (but not likely) that part of SOURCEROR will be over-
written during final processing, but this should not cause
problems since the front end of SOURCEROR will not be used
again by that point. There is a "secret" override provision
at the memory full point. If the key you hit is CTRL-0 (for
override), then SOURCEROR will return for another command.
You can use this to specify the desired ending point. You
can also use it to go a little further than SOURCEROR wants
you to, and disassemble a few more lines. Obviously, you
should not carry this to extremes.

CAUTION: After exiting SOURCEROR, do not try to run it again
with a CALL. Instead, run it again from disk. This is
because the DOS buffers have been re-established upon exit,
and will have partially destroyed SOURCEROR.

100

MERLI“ Users Manual SOURCEROR

The LABELER program

One of the nicest features of the SOURCEROR program is the
automatic assignment of labels to all recognizable addresses
in the binary file being disassembled. Addresses are recog-
nized by being found in a table which SOURCEROR references
during the disassembly process. For example, all JSR $FC58
instructions within a binary file will be listed by SOURCEROR
as JSR HOME. This table of address labels may be edited by
using the program LABELER.

To use labeler, BRUN LABELER. The program will then mention
that SRCRR.OBJ is being loaded into memory, and present the
main program menu.

Labeler Commands

Q:QUIT

When finished with any modifications you wish to make to the
label table, press “Q” to exit the LABELER program. If you
wish to save the new file, press -s-. Otherwise, press
ESC to exit without saving the table, for instance, if you
have only been reviewing the table.

L:LIST

This allows you to list the current label table. After “L-,
press any key to start the listing. Pressing any key will go
to the next page; CTRL-C will abort the listing.

D:DELETE LABEL(S)

Use this option to delete any address labels you do not want
in the list. After entering the D command, simply enter the
NUMBER of the 1label you want to delete. If you want to
delete a range, enter the beginning and ending label numbers,
separated by a comma.

101

MERLIN Users Manual SOURCEROR

A:ADD LABEL

Use this option to add a new label to the list. Simply tell
the program the hex address and the name you wish to
associate with that address. Press RETURN only to abort this
option at any point.

F:FREE SPACE

This tells you how much free space remains in the table for
new label entries.

U:UNLOCK SRCRR.OBJ

Before saving a new label table, you will need to UNLOCK the

SRCRR.OBJ file. Use this command before Quitting the LABELER
program, if you intend to save a new file.

102

MERLIN Users Manual SWEET 16

SWEET 16 — INTRODUCTION

by Dick Sedgewick

SWEET 16 is probably the least used and least understood seed
in the Apple][.

In exactly the same sense that Integer and Applesoft Basics
are languages, SWEET 16 is a language. Compared to the
Basics, however, it would be classed as low level with a
strong likeness to conventional 65@2 Assembly language.

To use SWEET 16, you must learn the language - and to quote
WOZ, "The opcode list is short and uncomplicated”. "Woz"
(Steve Wozniak), of course is Mr. Apple, and the creator of
SWEET 16.

SWEET 16 is ROM based in every Apple][from $F689 to S$F7FC.
It has its own set of opcodes and instruction sets, and uses
the SAVE and RESTORE routines from the Apple Monitor to
preserve the 65@2 registers when in use, allowing SWEET 16 to
be used as a subroutine.

It uses the first 32 locations on zero page to set up its 16
double byte registers, and is therefore not compatible with
Applesoft Basic without some additional efforts.

The original article, “SWEET 16: The 6502 Dream Machine”,
first appeared in Byte Magazine, November 1977 and later in
the original "WOZ PAK". The article is included here and
again as text material to help understand the use and imple-
mentation of SWEET 16.

Examples of the use of SWEET 16 are found in the Programmer”s
Aid #1, in the Renumber, Append, and Relocate programs. The
Programmers Aid Operating Manual contains complete source
assembly listings, indexed on page 65.

103

MERLIN Users Manual SWEET 16

The demonstration program is written to be introductory and
simple, consisting of three parts:

1. Integer Basic Program
2. Machine Language Subroutine
3. SWEET 16 Subroutine

The task of the program will be to move data. Parameters of
the move will be entered in the Integer Basic Program.

The "CALL 768" ($30@) at line 12, enters a 6502 machine
language subroutine having the single purpose of entering
SWEET 16 and subsequently returning to BASIC (addresses $30(,
$301, $302, and $312 respectively). The SWEET 16 subroutine
of course performs the move, and is entered at Hex locations
$3¢3 to $311 (see listing Number 3).

After the move, the screen will display three lines of data,
each 8 bytes long, and await entry of a new set of para-
meters. The three lines of ‘data displayed on the screen are
as follows:

Line 1: The first 8 bytes of data starting a $80@, which
is the fixed source data to be moved (in this
case, the string AS).

Line 2: The first 8 bytes of data starting at the hex
address entered as the destination of the
move (high order byte only).

Line 3: The first 8 bytes of data starting at $@@@@ (the
first four SWEET 16 registers).

The display of 8 bytes of data was chosen to simplify the
illustration of what goes on.

Integer Basic has its own way of recording the string AS.
Because the name chosen for the string "A$" is stored in 2
bytes, a total of five housekeeping bytes precede the data
entered as A$, leaving only three additional bytes available
for display. Integer Basic also adds a housekeeping byte at
the end of a string, known as the "string terminator".

104

MERLIN Users Manual SWEET 16

Consequently, for convenience purposes of the display, and to
see the string terminator as the 8th byte, the string data
entered via the keyboard should be limited to two characters,
and will appear as the 6th and 7th bytes. Additionally,
parameters to be entered include the number of bytes to be
moved. A useful range for this demonstration would be 1-8
inclusive, but of course 1-255 will work.

Finally, the starting address of the destination of the move
must be entered. Again, for simplicity, only the high-order
byte 1is entered, and the program allows a choice between
Decimal 9 and high-order byte of program pointer 1, to avoid
unnecessary problems (in this demonstration enter a decimal
number between 9 and 144 for a 48K APPLE).

The 8 bytes of data displayed starting at $¢@ will enable one
to observe the condition of the SWEET 16 registers after a
move has been accomplished, and thereby understand how the
SWEET 16 program works.

From the article "SWEET 16: The 65@2 Dream Machine", remember
that SWEET 16 can establish 16 double byte registers starting
at $0@. This means that SWEET 16 can use the first 32
addresses on zero page.

The "events"” occurring in this demonstration program can be
studied in the first four SWEET 16 registers. Therefore, the
8 byte display starting at $@@@@ is large enough for this
purpose.

These four registers are established as R@, R1, R2, R3:

R@ $000¢ & g001 —-SWEET 16 accumulator

R1 $0092 & 0p@3 -Source address

R2 $0003 & Po@4 -Destination address

R3 $00@4 & ?0d5 -Number of bytes to move
R14 $@d1c & @#@1D —Prior result register
R15 SPP1E & @@1F —SWEET 16 Program counter

105

MERLIN Users Manual SWEET 16

Additionally, an examination of registers R14 and R15 will
extend an understanding of SWEET 16, as fully explained in
the "WOZ" text. Notice that the high order byte of Rl4,
(located at $1D) contains $#6, and is the doubled register
specification (3X2=$06). R15, the SWEET 16 program counter
contains the address of the next operation as it did for each
step during execution of the program, which was $$312 when
execution ended and the 6502 machine code resumed.

To try a sample run, enter the Integer Basic program as shown
in Listing #1. Of course, REM statements can be omitted, and
line 10 is only helpful if the machine code is to be stored
on disk. Listing #2 must also be entered starting at $300.

NOTE: A 6502 disassembly does not look like Listing #3, but
the included SOURCEROR disassembler would create a correct
disassembly.

p Enter "RUN" and hit RETURN
Enter "12" and hit RETURN (AS$ - AS string data)
Enter "18" and hit RETURN (hi-order byte of destination)

The display should appear as follows:

$@80¢-C1 40 @@ 19 ¢8 Bl B2 1E (SOURCE)
$PAPP-C1 40 ¢F 10 @8 Bl B2 1E (Dest.)
$0PP0-1E 00 @8 @8 ¥8 GA $F G (SWEET 16)

NOTE: The 8 bytes stored at $@A@@ are identical to the 8
bytes starting at $#8@¢, indicating an accurate move of 8
bytes length has been made. They are moved one byte at a
time starting with token Cl and ending with token 1E. If
moving less that 8 bytes, the data following the moved data
would be whatever existed at those locations before the move.

106

MERLIN Users Manual SWEET 16

The bytes have the following significance:

A Token$
cl 49 99 14 @8 Bl B2 1E
I I I I I String
VN DSP NVA DATA DATA Terminator
The SWEET 16 registers are shown:
Low high low high low high low high
$0000 1E i) @8 @8 @8 oA (/]1])
| | I I
register register register register
R@ R1 R2 R3
(acc) (source) (dest) (#bytes)

The low order byte of R, the SWEET 16 accumulator, has $1E
in it, the last byte moved (the 8th).

The 1low order byte of the source register Rl started as $00
and was incremented eight times, once for each byte of moved
data.

The high order byte of the destination register R2 contains
$0A, which was entered as 1¢ (the variable) and poked into
the SWEET 16 code. The low-order byte of R2 was incremented
exactly like R1.

Finally, register R3, the register that stores the number of
bytes to be moved, has been poked to 8 (the variable B) and
decremented eight times as each byte got moved, ending up

$0000.

By entering character strings and varying the number of bytes
to be moved, the SWEET 16 registers can be observed and the
contents predicted.

107

MERLIN Users Manual SWEET_lg

Working with this demonstration program, and study of the
text material will enable you to write SWEET 16 programs that
perform additional 16 bit manipulations. The wunassigned
opcodes mentioned in the "WOZ Dream Machine"” article should
present a most interesting opportunity to “play"”.

SWEET 16 as a language - or tool - opens a new direction to
Apple][owners without spending a dime, and it”s been there
all the time.

"Apple-ites” who desire to learn machine language program—
ming can use SWEET 16 as a starting point. With this text
material to use, and less opcodes to learn, a user can quick-
ly be effective.

For those without Integer Basic, SWEET 16 is supplied as a
source file on this diskette.

Listing #1

DList
10 PRINT "[D]BLOAD SWEET": REM CTRL D
20 CALL - 936: DIM A $ (19)
3¢ INPUT "ENTER STRING A $ " , A $
49 INPUT "ENTER # BYTES " , B
5¢ IF NOT B THEN 4@ : REM AT LEAST 1
60 POKE 778 B : REM POKE LENGTH
70 INPUT "ENTER DESTINATION" , A
8¢ IF A > PEEK (2@3) - 1 THEN 70
9¢ IF A < PEEK (205) + 1 THEN 70
190 POKE 776 , A : REM POKE DESTINATION
110 M =8 : GOSUB 160 : REM DISPLAY
120 CALL 768 : REM GOTO $@30¢
13¢ M=A: GOSUB 160 : REM DISPLAY
140 M =0 : GOSUB 16 : REM DISPLAY
150 PRINT : PRINT : GOTO 3¢
169 POKE 60 , @ : POKE 61 , M
179 CALL -6@5 : RETURN : REM XAM8 IN MONITOR

108

MERLIN Users Manual

Listing #2

SWEET 16

300:20 89 F6 11 ¢@ @8 12 @@
3¢8:00 13 00 @@ 41 52 F3 @7
31¢:FB @@ 60

Listing #3
SWEET 16

$39¢0
$303
$306

$309

$3@C
$3¢D
$30E
$3@F
$311
$312

29
11
12

13

41
52
F3
@7
1)
60

89
1)

1Y)

99

F6
g8
99

1)

JSR
SET
SET
A
SET
B
LD
ST
DCR
BNZ
RIN
RTS

$F689
Rl source address
R2 destination address

R3 length

@Rr1
@r2
R3
$3@c

Data will be poked from the Integer Basic program:

A"
“p"

from Line 10¢
from Line 60

109

MERLIN Users Manual SWEET 16

SWEET 16: A Pseudo 16 Bit Microprocessor

By Steve Wozniak

Description

While writing APPLE BASIC for a 6502 microprocessor, I re-
peatedly encountered a variant of MURPHY'S LAW. Briefly
stated, any routine operating on 16-bit data will require at
least twice the code that it should. Programs making exten—
sive use of 16-bit pointers (such as compilers, editors, and
assemblers) are included in this category. In my case, even
the addition of a few double-byte instructions to the 65@2
would have only slightly alleviated the problem. What I
really needed was a 65@2/RCA 180@ hybrid - an abundance of
l6-bit registers and excellent pointer capability. My solu-
tion was to implement a non-existent (meta) l6-bit processor
in software, interpreter style, which I call SWEET 16.

SWEET 16 is based on sixteen 16-bit registers (R@-15), which
are actually 32 memory locations. R@ doubles as the SWEET 16
accumulator (ACC), R15 as the program counter (PC), and Rl4
as the status register. R13 holds compare instruction re-
sults and R12 is the subroutine return stack pointer if SWEET
16 subroutines are used. All other SWEET 16 registers are at
the user”s unrestricted disposal.

SWEET 16 instructions fall into register and non-register
categories. The register ops specify one of the sixteen
registers to be used as either a data element or a pointer to
data element or a pointer to data in memory, depending on the
specific instruction. For example INR R5 uses R5 as data and
ST @R7 uses R7 as a pointer to data in memory. Except for
the SET instruction, register ops take one byte of code each.
The non-register ops are primarily 6502 style branches with
the second byte specifying a +/-127 byte displacement rela-
tive to the address of the following instruction. Providing
that the prior register op result meets a specified branch
condition, the displacement is added to the SWEET 16 PC,
effecting a branch.

110

MERLIN Users Manual SWEET 16

SWEET 16 is intended as a 65@2 enhancement package, not a
stand-alone processor. A 6502 program switches to SWEET 16
mode with a subroutine call and subsequent code is inter-
preted as SWEET 16 instructions. The nonregister op RTN
returns the wuser program to 65@2 mode after restoring the
internal register contents (A, S, Y, P, and S). The fol-
lowing example illustrates how to use SWEET 16.

308 B9 00 @2 LDA IN,Y get a char.

3¢3 c9 ¢p cMP #"M" "M" for move

3¢5 D@ @9 BNE NOMOVE No. skip move

307 20 89 F6 JSR SW16 Yes, call SWEET 16
30A 41 MLOOP LD @r1 Rl holds source
3¢B 52 ST @r2 R2 holds dest.-addr.
3¢Cc F3 DCR R3 Decr. length

30D @7 FB BNZ MLOOP Loop until done

3¢F 0@ RTN Return to 6502 mode.
316 c9 c5 NOMOVE CMP #"E" "E" char?

312 Dpg 13 BEQ EXIT Yes, exit

314 8 INY No, cont.

NOTE: Registers A, X, Y, P, and S are not disturbed by SWEET
16.

Instruction Descriptions

The SWEET 16 opcode listing is short and uncomplicated.
Excepting ' relative branch displacements, hand assembly is
trivial. All register opcodes are formed by combining two
Hex digits, one for the opcode and one to specify a register.
For example, opcodes 15 and 45 both specify register R5 while
codes 23, 27 and 29 are all ST ops. Most register ops are
assigned in complementary pairs to facilitate remembering
them. Therefore, LD and ST are opcodes 2N and 3N respec—
tively, while LD @ and ST @ are codes 4N and 5N.

111

MERLIN Users Manual SWEET 16

Opcodes @ to C (Hex) are assigned to the thirteen non-regis-
ter ops. Except for RTIN (opcode (), BK (PA), and RS (@B),
the non register ops are 65@2 style branches. The second
byte of a branch instruction contains a +/-127 byte displace-
ment value (in two”s complement form) relative to the address
of the instruction immediately following the branch.

If a specified branch condition is met by the prior register
op result, the displacement is added to the PC effecting a
branch. Except for BR (Branch always) and BS (Branch to
Subroutine), the branch opcodes are assigned in complementary
pairs, rendering them easily remembered for hand coding. For
example, Branch if Plus and Branch if Minus are opcodes 4 and
5 while Branch if Zero and Branch if NonZero are opcodes 6
and 7.

Sweet 16 Opcode Summary

Register OPS

1n SET Rn Constant (Set)

2n LD Rn (Load)

3n ST Rn (Store)

4n LD @Rn (Load Indirect)

5n ST @Rn (Store Indirect)

6n LDD €Rn (Load Double Indirect)
7n STD @Rn (Store Double Indirect)
8n POP @Rn (Pop Indirect)

9n STP @Rn (Store POP Indirect)
An ADD Rn (Add)

Bn SUB Rn (Sub)

Cn POPD @Rn (Pop Double Indirect)
Dn CPR Rn (Compare)

En INR Rn (Increment)

Fn DCR Rn (Decrement)

112

MERLIN Users Manual

Non-register OPS

(1]1] RTN
@1 BR
@2 BNC
@3 BC
@4 BP
@5 BM
@6 BZ
@7 BNZ
@8 BM1
@9 BNM1
gA BK
@B RS
@c BS
@D

@E

@F

Register Instructions

SET

SET Rn,Constant 1n

ea
ea
ea
ea
ea
ea
ea
ea
ea

ea

Low

(Return
(Branch
(Branch
(Branch
(Branch
(Branch
(Branch
(Branch
(Branch
(Branch
(Break)
(Return
(Branch

to

SWEET 16

65@2 mode)

always)

2
if
if
if
if
if
if
if

No Carry)
Carry)

Plus)

Minus)

Zero)
NonZero)
Minus 1)
Not Minus 1)

from Subroutine)

to

Subroutine)

(Unassigned)
(Unassigned)
(Unassigned)

High

The 2-byte constant is loaded into Rn (n=@ to F,
and branch conditions set accordingly. The carry

cleared.

EXAMPLE :

15 34 A@ SET R5, $A@34

R5 now contains $A@34

Hex)
is

113

MERLIN Users Manual SWEET 16

LOAD

LD Rn 2n

The ACC (R@) is loaded from Rn and branch conditions set
according to the data transferred. The carry is cleared
and contents of Rn are not disturbed.

EXAMPLE :

15 34 A@SET R5, $A@34
25 LD R5 ACC now contains $A@34

STORE

LOAD

114

ST Rn 3n

The ACC 1is stored into Rn and branch conditions set
according to the data transferred. The carry is cleared
and the ACC contents are not disturbed.

EXAMPLE :

25 LD R5 Copy the contents
36 ST R6 of R5 to R6
INDIRECT

LD @Rn 4n

The low-order ACC byte is loaded from the memory loca-
tion whose address resides in Rn and the high-order ACC
byte 1is cleared. Branch conditions reflect the final
ACC contents which will always be positive and never
minus 1. The carry is cleared. After the transfer, Rn
is incremented by 1.

MERLIN Users Manual SWEET 16

EXAMPLE :

15 34 A SET R5, $A@34

45 LD @R5 ACC is loaded from memory
location $A@34
R5 is incr to $A@35

STORE INDIRECT

LOAD

ST @Rn 5n

The low-order ACC byte is stored into the memory loca-
tion whose address resides in Rn. Branch conditions
reflect the 2-byte ACC contents. The carry is cleared.
After the transfer Rn is incremented by 1.

EXAMPLE :

15 34 A§ SET RS, $A@34Load pointers R5, R6 with

16 22 99 SET R6, 9022A034 and $9¢22

45 LD @r5 Move byte from $A@34 to $9@22
56 ST @ré6 Both ptrs are incremented

DOUBLE-BYTE INDIRECT
LDD @Rn 6n

The 1low order ACC byte is loaded from memory location
whose address resides in Rn, and Rn is then incremented
by 1. The high order ACC byte is loaded from the memory
location whose address resides in the incremented Rn,
and Rn is again incremented by 1. Branch conditions
reflect the final ACC contents. The carry is cleared.

EXAMPLE:
15 34 AP SET R5, $A@34 The low-order ACC byte is loaded

65 LDD @R6 from $A@34, high-order from
$A@35, R5 is incr to $A@36

115

MERLIN Users Manual SWEET 16

STORE DOUBLE-BYTE INDIRECT

STD @Rn 7n

The low-order ACC byte is stored into memory location
whose address resides in Rn, and Rn is then incremented
by 1. The high-order ACC byte is stored into the memory
location whose address resides in the incremented Rn,
and Rn is again incremented by 1. Branch conditions
reflect the ACC contents which are not disturbed. The
carry is cleared.

EXAMPLE :

15 34 A§ SET R5, $A@34 Load pointers R5, R6
16 22 99 SET R6, $9¢22 with $A@34 AND $9¢22
65 LDD @R5 Move double byte from
76 STD @R $A@34-35 TO $9¢22-23.
Both pointers incremented by 2.

POP INDIRECT

116

POP @Rn 8n

The low-order ACC byte is loaded from the memory loca-
tion whose address resides in Rn after Rn is decremented
by 1, and the high order ACC byte is cleared. Branch
conditions reflect the final 2-byte ACC contents which
will always be positive and never minus one. The carry
is cleared. Because Rn is decremented prior to loading
the ACC, single byte stacks may be implemented with the
ST @Rn and POP @Rn ops (Rn is the stack pointer).

MERLIN Users Manual SWEET 16

EXAMPLE:

15 34 A@ SET R5, $A@34 Init stack pointer
10 @4 @@ SET R@, 4 Load 4 into ACC

55 ST @RS PUSH 4 onto stack
1¢ ¢5 @@ SET R@, 5 Load 5 into ACC

55 ST @R5 Push 5 onto stack
1¢ @6 @@ SET R@, 6 Load 6 into ACC

55 ST @R5 Push 6 onto stack
85 POP @R5 Pop 6 off stack into ACC
85 POP @RS Pop 5 off stack

85 POP @R5 Pop 4 off stack

STORE POP INDIRECT
STP @Rn 9n

The low-order ACC byte is stored into the memory loca-
tion whose address resides in Rn after Rn is decremented
by 1. Branch conditions will reflect the 2-byte ACC
contents which are not modified. STP @Rn and POP @Rn
are used together to move data blocks beginning at the

greatest address and working down. Additionally,
single-byte stacks may be implemented with the STP @Rn
ops.

EXAMPLE :

14 34 A@ SET R4, $A@34 Init pointers

15 22 99 SET R5, $9¢22

84 POP @R4 Move byte from

95 STP @R5 $AP33 to $9¢21

84 POP @R4 Move byte from

95 STP @R5 $A@32 to $90@2¢

117

MERLIN Users Manual SWEET lﬁ

ADD Rn An

The contents of Rn are added to the contents of ACC (R)
and the low-order 16 bits of the sum restored in ACC.
The 17th sum bit becomes the carry and the other branch
conditions reflect the final ACC contents.

EXAMPLE :

10 34 76 SET R@, $7634 Init R@ (ACC) and Rl

11 27 42 SET R1, $4227

Al ADD R1 Add Rl (sum=B85B c clear)

AQ ADD R@ Double ACC (R@) to $7@B6
with carry set.

SUBTRACT

118

SUB Rn Bn

The contents of Rn are Subtracted from the ACC contents
by performing a two”s complement addition:

ACC = ACC + Rn + 1

The low-order 16 bits of the subtraction are restored in
the ACC, the 17th sum bit becomes the carry and other
branch conditions reflect the final ACC contents. If
the 16-bit unsigned ACC contents are greater than or
equal to the 16-bit unsigned Rn contents, then the carry
is set, otherwise it is cleared. Rn is not disturbed.

EXAMPLE:

1¢ 34 76 SET R@, $7634 1Init R§ (ACC)
11 27 42 SET R1l, $4227 and Rl

Bl SUB R1 Subtract R1
(diff=$340D with c set)
B@ SUB R{ Clears ACC. (R®)

MERLIN Users Manual SWEET 16

POP DOUBLE-BYTE INDIRECT
POP @Rn Cn

Rn is decremented by 1 and the high-order ACC byte is
loaded from the location whose address now resides in
Rn. Rn is again decremented by 1 and the low-order ACC
byte is loaded from the corresponding memory location.
Branch conditions reflect the final ACC contents.

The carry is cleared. Because Rn is decremented prior
to loading each of the ACC halves, double-byte stacks
may be implemented with the STD @Rn and POPD @Rn ops
(Rn is the stack pointer).

EXAMPLE :

15 34 A SET R5, $A@34 Init stack pointer
10 12 AA SET R, $AA12 Load $AA12 into ACC.

75 STD @R5 Push $AAl12 onto stack

16 34 BB SET R@, $BB34 Load $BB34 into ACC.

75 STD @R5 Push $BB34 onto stack

C5 POPD @RS Pop $BB34 off stack

c5 POPD @R5 Pop $AAl12 off stacy
COMPARE

CPR Rn Dn

The ACC (R@) contents are compared to Rn by performing
the 16-bit binary subtraction ACC-Rn and storing the low
order 16 difference bits in R13 for subsequent branch
tests. If the 16-bit unsigned ACC contents are greater
than or equal to the 16-bit unsigned Rn contents, then
the carry is set, otherwise it is cleared. No other
registers, including ACC and Rn are disturbed.

119

MERLIN Users Manual SWEET 16

EXAMPLE :

15 34 A SET R5, $A@34 Pointer to memory
16 BF A SET R6, $A@PBF Limit address

B@ LOOP1 SUB R§ Zero data
75 STD @R5 Clear 2 locns
Increment R5 by 2
25 LD R5 Compare pointer RS
D6 CPR R6 to limit R6
@2 FA BNC LOOP1 Loop if c clear
INCREMENT
INR Rn En
The contents of Rn are incremented by 1. The carry

cleared and other branch conditions reflect the incre-

mented value.

EXAMPLE:

15 34 A§ SET R5, $A@34 (Pointer)

B@ SUB R@ Zero to R@

55 ST @R5 Clr Locn $A@34
E5 INR R5 Incr R5 to $A@36
55 ST @R5 Clrs locn $A@36

(not $A@35)

DECREMENT

DCR Rn Fn

The contents of Rn are decremented by 1. The carry is
cleared and other branch conditions reflect the decre-

mented value.

120

MERLIN Users Manual SWEET 16

EXAMPLE: (Clear 9 bytes beginning at location A@34)

15 34 A§ SET R5, $A@34 Init Pointer

14 @9 @@ SET R4, 9 Init counter

B@ SUB R@ Zero ACC

55 LOOP2 ST @R5 Clear a mem byte
F4 DCR R4 Decrement count

@7 FC BNZ LOOP2 Loop until Zero

Non-Register Instructions

RETURN TO 6502 MODE
RTIN ¢¢

Control is returned to the 65@2 and program execution
continues at the location immediately following the RTN
instruction. The 6502 registers and status conditions
are restored to their original contents (prior to en—
tering SWEET 16 mode).

BRANCH ALWAYS
BR ea ()1 d

An effective address (ea) is calculated by adding the
signed displacement byte (d) to the PC. The PC contains
the address of the instruction immediately following the
BR, or the address of the BR op plus 2. The displace-
ment is a signed two”s complement value from =128 to
+127. Branch conditions are not changed.

121

MERLIN Users Manual SWEET 16

NOTE: The effective address calculation is identical to
that for 65@2 relative branches. The Hex add & subtract
features of the APPLE][monitor may be used to calcu-
late displacements.

d=¢80 ea=PC+ 2 - 128
d =68l ea=PC+ 2 - 127
d=S$FF ea=PC+2-1
d =300 ea=PC+2+¢
d=$01l ea=PC+ 2+ 1
d=S87E ea=PC+ 2+ 126
d =8%7F ea=PC+ 2 + 127

EXAMPLE :

$3¢0@: @1 5¢ BR $352

BRANCH IF NO CARRY

BNC ea @2 d

A branch to the effective address is taken only if the
carry is clear, otherwise execution resumes as normal
with the next instruction. Branch conditions are not
changed.

BRANCH IF CARRY SET

122

BC ea @3 d

A branch is effected only if the carry is set. Branch
conditions are not changed.

MERLIN Users Manual SWEET 16

BRANCH IF PLUS
BP ea @4 d
A branch is effected only if the prior “result” (or most
recently transferred data) was positive. Branch condi-
tions are not changed.

EXAMPLE: (Clear mem from A@34 to A@3F)

15 34 Ap SET RS, $AP34 Init pointer
14 3F A§ SET R4, $A@G3F Init limit

BY LOOP 3 SUB R{

55 ST @R5 Clear mem byte
; Increment R5

24 LD R4 Compare limit

D5 CPR R5 to pointer

@4 FA BP LOOP3 Loop until done

BRANCH IF MINUS
BM ea @5 d
A branch is effected only if prior “result” was minus
(negative, MSB = 1). Branch conditions are not changed.
BRANCH IF ZERO
BZ ea @6 d

A branch is effected only if the prior “result” was
zero. Branch conditions are not changed.

123

MERLIN Users Manual SWEET 16

BRANCH IF NONZERO
BNZ ea @7 d
A branch is effected only if the prior “result” was non—
zero. Branch conditions are not changed.

BRANCH IF MINUS ONE

BMl ea ()8 d

A branch is effected only if the prior “result” was

minus one ($FFFF Hex). Branch conditions are not
changed.

BRANCH IF NOT MINUS ONE

BNM 1 ea ()9 4

A branch is effected only if the prior “result” was not
minus 1. Branch conditions are not changed.

BREAK
BK (A
A 6502 BRK (break) instruction is executed. SWEET 16
may be re-entered non destructively at SWl6d after cor-

recting the stack pointer to its value prior to ex-
ecuting the BRK.

124

MERLIN Users Manual SWEET 16

RETURN FROM SWEET 16 SUBROUTINE

RS @B

RS terminates execution of a SWEET 16 subroutine and
returns to the SWEET 16 calling program which resumes
execution (in SWEET 16 mode). R12, which is the SWEET
16 subroutine return stack pointer, is decremented
twice. Branch conditions are not changed.

BRANCH TO SWEET 16 SUBROUTIKE
BS ea #C d

A branch to the effective address (PC + 2 + d) is taken
and execution is resumed in SWEET 16 mode. The current
PC is pushed onto a “SWEET 16 subroutine return address”
stack whose pointer is R12, and R12 is incremented by 2.
The carry is cleared and branch conditions set to indi-
cate the current ACC contents.

EXAMPLE: (Calling a “memory move” subroutine to move

A@34-AP3B to 30@P-30@7)

15 34 AQ SET RS, $A@34 Init pointer 1
14 3B A@ SET R4, $A@3B Init limit 1
16 @@ 3¢ SET R6, $30¢@ Init pointer 2

gc 15 BS MOVE Call move subrtn
45 MOVE LD @RS Move one

56 ST @R6 byte

24 LD R4

D5 CPR R5 Test if done

@4 FA BP MOVE

@B RS ;Return

125

MERLIN Users Manual SWEET 16

Theory of Operation

SWEET 16 execution mode begins with a subroutine call to
SW16. All 6502 registers are saved at this time, to be
restored when a SWEET 16 RTN instruction returns control to
the 6502. If you can tolerate indefinite 6502 register
contents upon exit, approximately 3@ usec may be saved by
entering at SW16 + 3. Because this might cause an inadver-
tent switch from Hex to Decimal mode, it is advisable to
enter at SW16 the first time through.

After saving the 65@2 registers, SWEET 16 initializes its PC
(R15) with the subroutine return address off the 65@2 stack.
SWEET 16°s PC points to the location preceding the next
instruction to be executed. Following the subroutine call
are 1-,2-, and 3-byte SWEET 16 instructions, stored in
ascending memory locations like 65@2 instructions. The main
loop at SW16B repeatedly calls the “execute instruction”
routine to execute it.

Subroutine SW16C increments the PC (R15) and fetches the next
opcode, which is either a register op of the form OP REG with
OP between 1 and 15 or a non-register op of the form @ OP
with OP between ¢ and 13. Assuming a register op, the regis-
ter specification is doubled to account for the 3 byte SWEET
16 registers and placed in the X-reg for indexing. Then the
instruction type is determined. Register ops place the
doubled register specification in the high order byte of R 14
indicating the “prior result register” to subsequent branch
instructions. Non-register ops treat the register specifica-
tion (right-hand half-byte) as their opcode, increment the
SWEET 16 PC to point at the displacement byte of branch
instructions, load the A-reg with the “prior result register”
index for branch condition testing, and clear the Y-reg.

126

MERLIN Users Manual SWEET 16

When is an RTS really a JSR?

Each instruction type has a corresponding subroutine. The
subroutine entry points are stored in a table which is direc-
tly indexed into by the opcode. By assigning all the entries
to a common page, only a single byte of address need be
stored per routine. The 6502 indirect jump might have been
used as follows to transfer control to the appropriate sub-
routine.

LDA #ADRH High-order byte.
STA IND+1

LDA OPTBL,X Low-order byte.
STA IND

JMP (IND)

To save code, the subroutine entry address (minus 1) is
pushed onto the stack, high -order byte first. A 65@2 RTS
(return from subroutine) is used to pop the address off the
stack and into the 65@2 PC (after incrementing by 1). The
net result is that the desired subroutine is reached by
executing a subroutine return instruction!

OPcode Subroutines

The register op routines make use of the 6502 “zero page
indexed by X° and “indexed by X indirect” addressing modes to
access the specified registers and indirect data. The “re-
sult” of most register ops is left in the specified register
and can be sensed by subsequent branch instructions, since
the register specification is saved in the high-order byte of
Rl4. This specification is changed to indicate R@ (ACC) for
ADD and SUB instructions and R13 for the CPR (compare) in-
struction.

Normally the high-order R14 byte holds the “prior result
register” index times 2 to account for the 2-byte SWEET 16
registers and the LSB is zero. If ADD, SUB, or CPR instruc-
tions generate carries, then this index is incremented, set—
ting the LSB.

127

MERLIN Users Manual SWEET 16

The SET instruction increments the PC twice, picking up data
bytes in the specified register. In accordance with 6502
convention, the low-order data byte precedes the high-order
byte.

Most SWEET 16 non-register ops are relative branches. The
corresponding subroutines determine whether or not the “prior
result” meets the specified branch condition and if so,
update the SWEET 16 PC by adding the displacement value (-128
to +127 bytes).

The RTN op restores the 6502 register contents, pops the
subroutine return stack and jumps indirect through the SWEET
16 PC. This transfers control to the 65@2 at the instruction
immediately following the RTN instruction.

The BK op actually executes a 6502 break instruction (BRK),
transferring control to the interrupt handler.

Any number of subroutine levels may be implemented within
SWEET 16 code via the BS (Branch to Subroutine) and RS (Re-
turn from Subroutine) instructions. The user must initialize
and otherwise not disturb R12 if the SWEET 16 subroutine
capability is used since it is utilized as the automatic
subroutine return stack pointer.

Memory Allocation

The only storage that must be allocated for SWEET 16 vari-
ables are 32 consecutive locations in page zero for the SWEET
16 registers, four locations to save the 6502 register con-
tents, and a few levels of the 65@2 subroutine return address
stack. If you don"t need to preserve the 6502 register
contents, delete the SAVE and RESTORE subroutines and the
corresponding subroutine calls. This will free the four page
zero locations ASAV, XSAV, YSAV, and PSAV.

128

MERLIN Users Manual SWEET 16

User Modifications

You may wish to add some of your own instructions to this
implementation of SWEET 16. If you use the unassigned op-
codes $PE and $@F, remember that SWEET 16 treats these as 2-
byte instructions. You may wish to handle the break instruc-
tion as a SWEET 16 call, saving two bytes of code each time
you transfer into SWEET 16 mode. Or you may wish to use the
SWEET 16 BK (break) op as a “CHAROUT” call in the interrupt
handler. You can perform absolute jumps within SWEET 16 by
loading the ACC (Rf) with the address you wish to jump to
(minus 1) and executing a ST R15 instruction.

129

MERLIN Users Manual APPLESOFT LISTING INFORMATION

APPLESOFT LISTING INFORMATION

SOURCEROR.FP

A fully labelled and commented source listing of Applesoft
BASIC can be generated by the program SOURCEROR.FP on the
opposite side of the MERLIN diskette.

This program works by scanning the resident copy of Applesoft
present in your computer and generating text files containing
the bulk of Applesoft BASIC: T.APSOFT I, T.APSOFT II, T.AP-
SOFT III and T.APSOFT IV (the 48K version uses T.APSOFT 1
through T.APSOFT 7 instead).

To conserve space, these files contain macros that are de-
fined in another file on the disk entitled, APPLESOFT.S.
This file, when assembled using the PRTR command, will print
out a nicely formatted disassembly of Applesoft, auto-
matically bringing in and using the APSOFT files as
necessary. Exact details on doing this are outlined below.

PLEASE NOTE that this is NOT an "official” source listing
from Apple Computer, 1Inc., but rather a product of the
Author”s own research and interpretation of the original
Applesoft ROM. Apple Computer, Inc. was not in any way
involved in the preparation of this data, nor was the final
product reviewed for accuracy by that company. Use of the
term APPLE should not be construed to represent any endorse-
ment, official or otherwise, by Apple Computer, Inc.

Additionally, Roger Wagner Publishing makes no warranties
concerning the accuracy or usability of this data. It is
provided solely for the entertainment of users of the MERLIN
assembler.

131

MERLIN Users Manual APPLESOFT LISTING INFORMATION

WARNING: SOURCEROR.FP and some temporary work files that are
not normally visible with the CATALOG command are DELETED
when SOURCEROR.FP is BRUN. For this reason, you should make
a backup copy of the SOURCEROR.FP side of the MERLIN disk
with the COPYA program on the DOS 3.3 System Master diskette.
Use the backup copy to make the Applesoft listing as
explained next.

Steps to list the Applesoft Disassembly
1. BRUN SOURCEROR.FP on your backup copy (see warning above).

2. Boot MERLIN, select the D)rive that contains your backup
copy and L)oad APPLESOFT.

3. RAM CARD VERSION: From the editor mode, set SYM to $80@@d,
enter your PRTR command and ASM)ble the file. The screen
should look something like this when you“re done:

:SYM $80¢¢
:PRTR 1 "I8@N"APPLESOFT LISTING"
: ASM

4. 48K VERSION: From the editor mode, set HIMEM and SYM to
$4E@P, enter your PRTR command and ASM)ble the file. The
screen should look something like this when you“re done:

:HIMEM:$4EQ@ (<--Note colon)

:SYM $S4LE@Q
:PRTR 1 "I8@N"APPLESOFT LISTING"
:ASM

In the examples above, the PRTR command will send output to
slot 1, initialize the printer interface card with <CTRL
I>8PN" (the I is in inverse), and will print "APPLESOFT
LISTING” as a header at the top of every page.

132

MERLIN Users Manual APPLESOFT LISTING INFORMATION

MERLIN will then ask "GIVE VALUE FOR SAVEOBJ :" This refers
to whether or not you want to save object code generated by
the assembly. It is recommended that you answer, "@". This
is all you need to do to begin the printing process. If you
answer "1", you will save object code at the cost of slowing
down the system. Saved object code allows you to verify it
against where it was taken from.

MERLIN will now do some preliminary checking to make sure
everything is OK before printing out the listing. The disk
will be accessed a few times, sometimes with long periods
between accesses. This is normal. The entire checking pro-
cess takes about 3.5 minutes.

MERLIN will then begin to print out a completely disassembled
and commented listing of Applesoft. It will take 1@5 pages
(including the symbol tables) and nearly an hour and a half
to print out (at a printer rate of 80 characters per second).

133

MERLIN Users Manual GLOSSARY

GLOSSARY

ABORT —terminate an operation prematurely.

ACCESS —locate or retrieve data.

ADDRESS —a specific location in memory.

ALGORITHM —a method of solving a specific problem.

ALLOCATE -set aside or reserve space.

ASCII —industry standard system of 128 computer
codes assigned to specified alpha-numeric
and special characters.

BASE —in number systems, the exponent at which
the system repeats itself; the number of
symbols required by that number system.

BINARY —the base two number system, composed
solely of the numbers zero and one.

BIT —-one unit of binary data, either a zero or
a one.

BRANCH —continue execution at a new location.

BUFFER —large temporary data storage area.

BYTE -Hex representation of eight binary bits.

CARRY -flag in the 6502 status register.

CHIP —tiny piece of silicon or germanium con-
taining many integrated circuits.

CODE —slang for data or machine language in-

structions.

135

MERLIN Users Manual

CTRL

CURSOR

DATA

DECREMENT

DEFAULT

DELIMIT

DISPLACEMENT

EQUATE

EXPRESSION

FETCH

FIELD

FLAG

HIGH ORDER

136

GLOSSARY

—abbreviation for control or control
character.

—character, wusually a flashing inverse
space, which marks the position of the
next character to be typed.

=facts or information used by, or in a
computer program.

—decrease value in constant steps.

-nominal value or condition assigned to a
parameter if not specified by the user.

—separate, as with a: in a BASIC program
line.

—constant or variable used to calculate
the distance between two memory
locations.

—establish a variable.

—actual, implied or symbolic data.

—retrieve or get.

—portion of a data input reserved for a
specific type of data.

~register or memory location used for
preserving or establishing a status of a
given operation of condition.

—~the Hexadecimal (BASE 16) number system,
composed of the numbers (-9 and the let-
ters A-F.

—the first, or most significant byte of a
two-byte Hex address or value.

MERLIN Users Manual GLOSSARY

HOOK -vector address to an I/0 routine or port.
INCREMENT —-increase value in constant steps.
INITIALIZE —set all program parameters to zero, nor-

mal, or default condition.

1/0 —input/output.

INTERFACE -method of interconnecting peripheral
equipment.

INVERT —change to the opposite state.

LABEL -name applied to a variable or address,

usually descriptive of its purpose.
LOOKUP -slang; see table.

LOW-ORDER —the second, or least significant byte of
a two-byte Hex address or value.

LSB —least significant (bit or byte) one with
the least value.

MACRO —in assemblers, the capability to "call” a
code segment by a symbolic name and place
it in the object file.

MICROPROCESSOR —heart of a microcomputer. (In the Apple,
the 65¢2 chip).

MOD —algorithm returning the remainder of a
division operation.

MODE —particular sub-type of operation.

MODULE —portion of a program devoted to a spec-
ific function.

MNEMONIC -symbolic abbreviation using characters
helpful in recalling a function.

137

MERLIN Users Manual

MSB

NULL
OBJECT CODE

OFFSET

OPCODE

OPERAND

PAGE

PARAMETER

PERIPHERAL

POINTER

PORT

PROMPT

PSEUDO

RAM

REGISTER

RELATIVE

ROM

138

GLOSSARY

-most significant (bit or byte), one with
the greatest value. :

-without value.

-ready to run code produced by an assem—
bler program.

-value of a displacement.

—instruction to be executed by the 65@2.

—data to be operated on by a 65¢2 instruc-
tion.

—a 256-byte area of memory named for the
first byte of its Hex address.

—constant or value required by a program
or operation to function.

-external device.

-memory location containing an address to
data elsewhere in memory.

-physical interconnection point to per-
ipheral equipment.

—a character asking the user to input
data.

—artificial, a substitute for.
-Random Access Memory.
-single 65@2 or memory location.

—branch made using an offset or displace-—
ment.

-Read Only Memory.

MERLIN Users Manual GLOSSARY

SIGN BIT -bit eight of a byte; negative if value
greater than $80.

SOURCE CODE —data entered into an assembler which will
produce a machine language program when
assembled.

STACK —temporary storage area in RAM used by the
65¢2 and assembly language programs.

STRING —a group of ASCII characters usually en-
closed by delimiters such as “~ or ".

SWEET 16 —program which simulates a 16 bit micro-
processor.

SYMBOL —symbolic or mnemonic label.

SYNTAX -prescribed method of data entry.

TABLE —-list of values, words, data referenced by

a program.
TOGGLE -switch from one state to the other.

VARIABLE —alpha-numeric expression which may assume
or be assigned a number of values.

VECTOR —address to be referenced or branched to.

139

MERLIN Users Manual SAMPLE PROGRAMS

SAMPLE PROGRAMS

The first group of three programs are superb Assembly Lan-
guage utilities written by Steve Wozniak and Allen Baum, and
are still found on the original Integer Basic F4 ROM. They
are Supplied in source code format on this diskette for the
benefit of Apple][Plus owners who do not have Integer
Basic. They may be located at any convenient memory
location.

The Floating Point Routines

These are single precision floating point routines that may
be interfaced to a BASIC or assembly language program. In-
formation on their use may be found in the source 1listings
themselves.

The Multiply/Divide Routines

These routines are intended to be used as subroutines in
assembly language programs providing a four byte multiply or
divide result. Brief information on their use is provided in
the source listings, and a multiply demo by Dave Garson is
included on this diskette.

PRDEC

This 1is one the most used subroutines in the Integer Basic
ROM set. It is called by virtually every routine which re-
quires the output of an integer number in the range @-65535.
It is easily integrated in any Assembly Language program. To
use it, load the accumulator with the high-order byte of
[number], load X with the low-byte and call PRDEC. Alter-
natively, store the high-byte in $F3, the low byte in $F2,
and call PRDEC+4.

141

MERLIN Users Manual SAMPLE PROGRAMS

MSGOUT

This is a subroutine by Andy Hertzfeld to output ASCII
strings from an Assembly Language program. If MERLIN INV or
FLS Pseudo-ops are used in connection with it, the ORA #$8¢
must be removed, and all normal ASCII must have the high-bit
set. Also in the same source file are two simple subroutines
to read ASCII and hexadecimal characters input by the user.

UPCON

This wutility by Glen Bredon is provided for users who do not
have a lowercase video display chip. It will search for
source file comments beginning with either "*" or ";", and
convert all lower case characters to upper case. Load the
source file with MERLIN, then BRUN UPCON, via the “C” command

in the EXEC mode.

Game Paddle Printer Driver

When the Apple][was first developed, there were no printer
interface cards, nor was there really much consideration even
given to the need for a printer. Obviously, the folks at
Apple computer had a requirement to hard copy their develop-
ment routines, thus a primitive teletype driver was written
by Randy Wiggington and Steve Wozniak to serve their in-house
needs. This was subsequently published in the famous “red
book" instruction manual, the second for the Apple][. Along
came the Disk][, and lo and behold, the driver would not
work, since it ignored DOS and set its own I/0 hooks. Next
the Aldrich brothers took care of this problem, and we were
back in business. By this time, of course, there was no
desperate need for a game paddle driver; interface cards were
developed, and worked well. Nevertheless, some users con-
tinued wusing the game I/0 driver, so Dave Garson and Val
Golding again modified the drive so that inverse and flashing
characters would not upset the printer when doing a catalog,
&c.

142

MERLIN Users Manual SAMPLE PROGRAMS

Concurrently, many new interface cards of all kinds were
developed for the Apple: clock cards, 8@ column cards, ROM
cards, &c., until card space is now at a premium. Running a

serial printer from the game I/0 port is one way in which the
user can save both the cost of a printer interface and the
slot space it would occupy. Already the teletype driver has
been adapted to such printers as Integral Data, Base 2, Heath
H-14, and others.

As a last step, Glen Bredon has added a number of improve-
ments to the driver. It can print formatted BASIC 1listings
to any column width, starting with column one, can be output
with or without video. The video may be left on even when
printing beyond 4§ columns, something most interface cards
can not do. These functions are handled by Basic POKE state-
ments to the flags at the end of the program.

Full documentation and instructions are contained in the
source file included on this diskette. Naturally, it is
completely compatible with MERLIN, and called with the MERLIN
USER command. This is set up when it is first BRUN, which
establishes the ampersand hooks, which may also be used from
BASIC.

In addition, the source code is well commented, so that it in

itself, serves as a tutorial on writing driver routines for
different applications, etc.

143

.44

MERLIN Users Manual UTILITIES

UTILITIES

Formatter

This program is provided to enhance the use of MERLIN as a
general text editor. It will automatically format a file
into paragraphs using a specified line length. Paragraphs
are separated by empty lines in the original file.

To use FORMATTER, you should first BRUN it from EXEC mode.
FORMATTER 1loads itself $9064 and relocates itself to $94Ad.
This will simply set up the editor”s USER vector. To format
a file which is in memory, issue the USER command from the
editor.

The formatter program will request a range to format. If you
Jjust specify one number, the file will be formatted from that
line to the end. Then you will be asked for a line length,
which wmust be less than 250. Finally, you may specify
whether you want the file justified on both sides (rather
than just on the left).

The first thing done by the program is to check whether or
not each line of the file starts with a space. If not, a
space is inserted at the start of each line. This is to be
used to give a left margin using the editor”s TAB command
before using the PRINT command to print out the file.

Formatter uses inverse spaces for the fill required by two-
sided justificationm. This is done so that they can be 1lo-
cated and removed if you want to reformat the file later. It
is important that you do not use the FIX or TEXT commands on
a file after it has been formatted (unless another copy has
been saved). For files coming from external sources, it is
desirable to first use the FIX command on them to make sure
they have the form expected by FORMATTER. For the same
reason, it 1is advisable to reformat a file using only left
justification prior to any edit of the file.

Don“t forget to use the TABS command before printing out a
formatted file.

145

MERLIN Users Manual UTILITIES

CHRGEN 70

CHRGEN 7@ is a 7@-column character generator which is de-
signed specifically to allow the use of MERLIN with a 7¢
column by 24 line display on the Hi-Res screen. Because of
the large amount of memory required, CHRGEN 7@ is available
only with the RAM card version of MERLIN.

TV sets do not provide sufficient resolution for use with
CHRGEN 7@, thus requiring use of a display monitor for
satisfactory results.

To use CHRGEN 7@, you must first BRUN it from MERLINs EXEC
mode as a DOS command (after a CATALOG). This will reset the
source address to $4@@1 (above the Hi-Res screen which must
be used by CHRGEN 70). This, of course, will delete any
source file in memory at the time. Once it has been BRUN,
you can invoke it at any time by typing "USER" from the
editor.

To exit CHRGEN 7@, simply type VID $#, VID 16, or PR#@ from
the editor. CHRGEN 7 is automatically disconnected when you
exit the editor to the EXEC Mode. Upon return to the editor,
you can reconnect it by typing "USER" again. To permanently
remove CHRGEN 7@ in order to free up the area normally used
by long source listings, you will have to BRUN MERLIN again.

To use CHRGEN 7¢ with the editor”s PRTR command, just type
PRTR 8 "filename", with CHRGEN 7@ installed in the system.

If the USER vector has been written over by some other USER
routine, it can be reset to point to CHRGEN 7@ either by
BRUNing CHRGEN 7@ again, or by going to the Monitor (use the
MON command) and typing in 90@G. The latter assumes, of
course, that CHRGEN 7§ is still intact at $90@.

146

MERLIN Users Manual UTILITIES

CHRGEN 70 includes a version of the FORMATTER program. To
implement FORMATTER when CHRGEN 7¢ is connected, just type
CTRL-T from the editor”s command mode. NOTE: This command
may mnot be accepted unless something has been listed
previously.

CHRGEN 7@ also includes some keyboard macros. Typing the
ESCAPE key followed by certain other keys will produce the
keyboard macros. These are presently defined for these keys
as:
*> " " # +
273 ;3 XYDHPE@LS~-0CAE

The macro table lies at the end of the CHRGEN 7@ program at
$1500 and is modifiable. It must end with a $FF.

CAUTION: When CHRGEN 7@ is up, you must not load any binary
source file longer than 88 sectors or it will overwrite the
DOS buffers and bomb the system. - Text files do not present
this danger since they are never allowed to go beyond HIMEM:.

XREF, XREF.XL and STRIP

Utility programs XREF, XREF.XL and STRIP provide a convenient
means of generating a cross-reference listing of all labels
used within a MERLIN assembly language (i.e., source)
program.

Such a listing can help you quickly find, identify and trace
values throughout a program. This becomes especially im-
portant when attempting to understand., debug or fine tune
portions of code within a large program.

The MERLIN assembler by itself provides a printout of its
symbol table only at the end of a successful assembly (pro-
vided that you have not defeated this feature with the LST
OFF pseudo op code). While the symbol table allows you to
see what the actual value or address of a label is, it does
not allow you to follow the use of the 1label through the
program.

147

MERLIN Users Manual UTILITIES

This is where XREF, XREF.XL and STRIP come in.
XREF gives you a complete alphabetical and numerical printout
of label wusage within an assembly language program with a
length of up to approximately 1,@@¢ lines (heavily commented)
or 2,0P@ lines (lightly commented).
XREF.XL handles "extra-large"” files of up to three or four
times the size of those handled by XREF by storing the gen-
erated cross reference table on disk and printing it out
later.
STRIP provides a method of reducing file size by removing
comments from source code.
Sample MERLIN Symbol Table Printout:
Symbol table - alphabetical order:

ADD =$F786 BC =$F7B@ BK =$F706

Symbol table - numerical order:

BK =$F706 ADD =$F786 BC =$F7B@

Sample MERLIN XREF Printout:

Cross referenced symbol table - alphabetical order:

ADD =$F786 1¢1 185%
BC =$F7B0 9¢ 207*
BK =$F706 104 121%

Cross referenced symbol table - numerical order:

BK =$F7¢06 1@4 121%*
ADD =$F786 1¢1 185%
BC =$F7B¢ 99 297%*

148

MERLIN Users Manual UTILITIES

As you can see from the above example (taken from the SWEET
16 source file on the MERLIN diskette), the "definition"” or
actual value of the label is indicated by the "=" sign, and
the 1line number of each line in the source file that the
label appears in is listed to the right of the definition.
In addition, the line number where the label is either de-
fined or used as a major entry point is suffixed ("flagged")
with a "*".

An added feature is a special notation for additional source
files that are brought in during assembly with the PUT pseudo
opcode: "134.82", for example, indicates line number 134 of
the main source file (which will be the line containing the
PUT opcode) and line number 82 of the PUT file, where the
label is actually used.

XREF Instructions

1. Get into MERLIN"s Executive Mode, make sure you“ve S)aved
the file that you"re working on and select the D)rive no.
that the MERLIN disk is in.

2. C)atalog the disk and when MERLIN asks you for a COMMAND:
after the Catalog, enter: BRUN XREF. (Your file in
memory will now be erased.)

3. Hit <CTRL C> <RETURN> and re-L)oad your file. Initialize
your printer with the appropriate PR# or PRTR command
(XREF is usually, but not necessarily, a printer oriented
command) .

4. Type in the appropriate USER command:
USER @ -Print assembly 1listing and alphabetical cross
reference only. (USER has the same effect as

USER @).

USER 1 -Print assembly listing and both alphabetical and
numerically sorted cross reference listings.

149

MERLIN Users Manual UTILITIES

USER 2 -Do not print assembly listing but print alpha-
betical cross reference only.

USER 3 -Do not print assembly listing but print both
alphabetical and numerical cross reference

listings.

USER commands @#-3 (above) cause labels within conditional
assembly areas with the DO condition OFF to be ignored and
not printed in the cross reference table.

There are additional USER commands (4-7) that function the
same as USER (-3, except that they cause labels within con-
ditional assembly areas to be printed no matter what the
state of the DO setting is. The only exception to this is
that labels defined in such areas and not elsewhere will be
ignored.

NOTE: You may change the USER command as many times as you
wish (e.g., from USER 1 to USER 2). The change is not per-
manent until you enter the ASM command (below).

5. Enter the ASM command to begin the assembly and printing
process.

CAUTIONS for the use of XREF

XREF works by examining the listing output of the assembler.
On the second assembly pass, it builds a cross reference list
beginning at HIMEM: instead of creating object code there.
(If direct assembly to disk is selected by the DSK opcode,
however, the object code will be generated) . The list uses
six bytes per symbol reference which can use up available
memory very quickly. Thus, on long files, you should set
HIMEM: as low as possible. (The WP command can be used to
find the end of the source file, which represents the lowest
position you can set HIMEM:).

150

MERLIN Users Manual UTILITIES

Since the program requires assembler output, code in areas
with LST OFF will not be processed and labels in those areas
will not appear in the table. In particular, it is essential
to the proper working of XREF that the LST condition be ON at
the end of assembly (since the program also intercepts the
regular symbol table output). For the same reason, the CTRL
D flush command must not be used during assembly. The pro-
gram attempts to determine when the assembler is sending it
an error message on the first pass and it aborts assembly in
this case, but this is not 1@@% reliable.

Macros require special consideration. Since the syntax in
these structures can become very complicated, XREF may get
confused and cause assembly to stop. This usually happens
when lines containing the >>> (PMC or "Put MaCro) pseudo
opcode are followed by string literals or parentheses and you
have chosen to suppress printing the expanded form of the
macro in your assembled listing with the EXP OFF pseudo
opcode. You can get around this problem by printing out the
assembly 1listing first in the usual manner (with the symbol
table suppressed by the LST OFF pseudo opcode) and then
printing out just the cross reference table with EXP ON and
using USER 2 or 3.

Another thing to look out for when using macros is the fact
that 1labels defined within macro definitions have no global
meaning and are therefore not cross-referenced.

DEF MAC {---Macro definition
cMP #]1
BNE DONE
ASL

DONE <L

{---Beg. of program
>>> DEF.GLOBAL <---Macro call

In the above example, variable GLOBAL will be cross ref-
erenced, but local label DONE will not.

151

MERLIN Users Manual UTILITIES

XREF .XL Instructions

XREF.XL 1is designed to handle files three to four times as
large as those handled by XREF. It was originally designed
to cross reference the Applesoft Basic source file, which is
approximately the largest source file it can process.

To use XREF.XL, just follow the same five steps in the XREF
instructions explained previously, substituting "XREF.XL" for
"XREF" in step 2.

XREF.XL works in a manner similar to XREF, except that it
writes the cross reference label table to disk in a file
called X.R.FILE (You can delete this file when you are done
with the table). At the end of assembly, this file is loaded
from disk and placed in memory, overwriting your source file.
As explained in step 1, make sure that you”ve saved your
source file first, because the source file will be deleted
from memory when you return to the edit<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>